△ADE与△AEB相似,证明如下:由∠C=90°,且AC=EC,得到△AEC为等腰直角三角形,且得到BE等于2AB,同时可得出∠AEC=45°,根据锐角三角函数定义表示出关系式,得出AE与AC的关系,即为AE与DE的关系,求出AE与DE的比值,由BE为AC的2倍,求出BE与AE的比值,可得出两比值相等,再根据夹角为公共角,利用两对对应边成比例且夹角相等的两三角形相似,可得出△ADE与△AEB相似,得证.
【解析】
△AED∽△BEA,…(2分)
证明如下:
在△AED和△BEA中,
∵△ABC中,∠C=90°,BD=DE=EC=AC,
∴△AEC为等腰直角三角形,BE=BD+DE=2BD=2AC,
∴∠AEC=45°,即sin∠AEC=,
∴AE==AC,
∴===,…(3分)
∵∠AED=∠BEA,…(4分)
∴△AED∽△BEA.…(5分)