满分5 > 初中数学试题 >

通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一...

通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边/腰=manfen5.com 满分网.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°=______
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是______
(3)如图②,已知sinA=manfen5.com 满分网,其中∠A为锐角,试求sadA的值.

manfen5.com 满分网
(1)根据等腰三角形的性质,求出底角的度数,判断出三角形为等边三角形,再根据正对的定义解答; (2)求出0度和180度时等腰三角形底和腰的比即可; (3)作出直角△ABC,构造等腰三角形ACD,根据正对的定义解答. 【解析】 (1)根据正对定义, 当顶角为60°时,等腰三角形底角为60°, 则三角形为等边三角形, 则sad60°==1. 故答案为:1. (2)当∠A接近0°时,sadA接近0, 当∠A接近180°时,等腰三角形的底接近于腰的二倍,故sadA接近2. 于是sadA的取值范围是0<sadA<2. 故答案为0<sadA<2. (3)如图,在△ABC中,∠ACB=90°,sin∠A=. 在AB上取点D,使AD=AC, 作DH⊥AC,H为垂足,令BC=3k,AB=5k,  则AD=AC==4k, 又在△ADH中,∠AHD=90°,sinA=. ∴DH=ADsinA=k,AH==k. 则在△CDH中,CH=AC-AH=k,CD==k. 于是在△ACD中,AD=AC=4k,CD=k. 由正对的定义可得:sadA==.
复制答案
考点分析:
相关试题推荐
如图,在菱形ABCD中,BH⊥AD于H,且AH:HD=3:2.
(1)试求sin∠BAD的值;
(2)若菱形ABCD的面积为100,试求其两条对角线BD与AC的长.

manfen5.com 满分网 查看答案
小华是某校八年(1)班的学生,他班上最高的男生大伟的身高是174cm,最矮的男生小刚的身高是150cm,为了参加学校篮球队的选拔,小华对班上30名男生的身高(单位:cm)进行了统计.
频率分布表
分组频数频率
150≤x<15510.03
155≤x<160120.40
160≤x<16580.27
165≤x<170a0.20
170≤x<1753b
请你根据上面不完整的频率分布表,解答下列问题:
(1)表中a和b所表示的数分别为:______
(2)小明班上男生身高的极差是多少?
(3)身高的中位数落在哪个分组?
(4)若身高165cm(含165cm)以上的男生可以参加选拔,则符合条件的男生占全班男生的百分之几?
查看答案
某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?
查看答案
(1)计算:manfen5.com 满分网
(2)解不等式组,并把解集在数轴上表示出来.manfen5.com 满分网
查看答案
如图是二次函数y=ax2+bx+c(a≠0)在平面直角坐标系中的图象,根据图形判断①c>0;②a+b+c<0;③2a-b<0;④b2+8a>4ac中正确的是(填写序号)   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.