2010年湛江市某校为了了解400名学生体育加试成绩,从中抽取了部分学生的成绩(满分为40分,成绩均为整数).绘制了频数分布表与频数分布直方图(如图所示),请结合图表信息解答下列问题.
分组 | 频数 | 频率 |
15.5~20.5 | 6 | 0.10 |
20.5~25.5 | | 0.20 |
25.5~30.5 | 18 | 0.30 |
30.5~35.5 | 15 | |
35.5~40.5 | 9 | 0.15 |
合计 | | 1.00 |
(1)补全频数分布表与频数分布直方图;
(2)如果成绩在31分以上(含31分)的同学属于优良,请你估计全校约有多少人达到优良水平;
(3)加试结束后,校长说:“2008年,初一测试时,优良人数只有90人,经过两年的努力,才有今天的成绩….”假设每年优良人数增长速度一样,请你求出每年的平均增长率(结果精确到1%).
考点分析:
相关试题推荐
如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC于E点,连接BE.
(1)若BE是△DEC的外接圆⊙O的切线,求∠C的大小;
(2)当AB=1,BC=2时,求△DEC外接圆的半径.
查看答案
在△ABC中,沿着中位线DE剪切后,用得到的△ADE和四边形DBCE可以拼成平行四边形DBCF,剪切线与拼图如图1所示.仿照上述的方法,按要求完成下列操作设计,并在规定位置画出图示.(画图工具不限,剪切线用实线表示,拼接线用虚线表示,要求写出
简要的说明)
(1)将平行四边形ABCD剪切成两个图形,再将它们拼成一个矩形,剪切线与拼图画在图2的位置;
(2)将梯形ABCD剪切成两个图形,再将它们拼成一个平行四边形,剪切线与拼图画在图3的位置.
查看答案
某商场开展购物抽奖活动,抽奖箱中有3个形状、大小和质地等完全相同的小球,分别标有数字1,2,3.顾客从中随机摸出一个小球,然后放回箱中,再随机摸出一个小球.
(1)利用树形图法或列表法(只选其中一种),表示摸出小球可能出现的所有结果;
(2)若规定:两次摸出的小球的数字之积为9,则为一等奖;数字之积为6,则为二等奖;数字之积为2或4,则为三等奖.请你分别求出顾客抽中一等奖、二等奖、三等奖的概率.
查看答案
如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.
查看答案