满分5 > 初中数学试题 >

如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度. (1)求⊙O的直径;...

如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60度.
manfen5.com 满分网
(1)求⊙O的直径;
(2)若D是AB延长线上一点,连接CD,当BD长为多少时,CD与⊙O相切;
(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连接EF,当t为何值时,△BEF为直角三角形.
(1)根据已知条件知:∠BAC=30°,已知AB的长,根据直角三角形中,30°锐角所对的直角边等于斜边的一半可得AB的长,即⊙O的直径; (2)根据切线的性质知:OC⊥CD,根据OC的长和∠COD的度数可将OD的长求出,进而可将BD的长求出; (3)应分两种情况进行讨论,当EF⊥BC时,△BEF为直角三角形,根据△BEF∽△BAC,可将时间t求出; 当EF⊥BA时,△BEF为直角三角形,根据△BEF∽△BCA,可将时间t求出. 【解析】 (1)∵AB是⊙O的直径, ∴∠ACB=90°; ∵∠ABC=60°, ∴∠BAC=180°-∠ACB-∠ABC=30°; ∴AB=2BC=4cm,即⊙O的直径为4cm. (2)如图(1)CD切⊙O于点C,连接OC,则OC=OB=×AB=2cm. ∴CD⊥CO;∴∠OCD=90°; ∵∠BAC=30°, ∴∠COD=2∠BAC=60°; ∴∠D=180°-∠COD-∠OCD=30°; ∴OD=2OC=4cm; ∴BD=OD-OB=4-2=2(cm); ∴当BD长为2cm,CD与⊙O相切. (3)根据题意得: BE=(4-2t)cm,BF=tcm; 如图(2)当EF⊥BC时,△BEF为直角三角形,此时△BEF∽△BAC; ∴BE:BA=BF:BC; 即:(4-2t):4=t:2; 解得:t=1; 如图(3)当EF⊥BA时,△BEF为直角三角形,此时△BEF∽△BCA; ∴BE:BC=BF:BA; 即:(4-2t):2=t:4; 解得:t=1.6; ∴当t=1s或t=1.6s时,△BEF为直角三角形.
复制答案
考点分析:
相关试题推荐
我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售.按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:
西瓜种类ABC
每辆汽车运载量(吨)456
每吨西瓜获利(百元)161012
(1)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,求y与x的函数关系式;
(2)如果装运每种西瓜的车辆数都不少于10辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要是此次销售获利达到预期利润25万元,应采取怎样的车辆安排方案?
查看答案
manfen5.com 满分网在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF;
(2)若∠CAE=30°,求∠ACF的度数.
查看答案
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2manfen5.com 满分网,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.
(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是______
(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.
查看答案
如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.
(1)求∠ABD的度数;
(2)求线段BE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.