满分5 > 初中数学试题 >

已知⊙O过点D(3,4),点H与点D关于x轴对称,过H作⊙O的切线交x轴于点A....

已知⊙O过点D(3,4),点H与点D关于x轴对称,过H作⊙O的切线交x轴于点A.
(1)求直线HA的函数解析式;
(2)求sin∠HAO的值;
(3)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化,请说明理由.
manfen5.com 满分网
(1)连OH,作HK⊥x轴于k,根据关于x轴对称的坐标特点得到H点坐标为(3,-4),再根据切线的性质由AH为⊙O的切线,得到OH⊥AH,利用等角的余角相等得到∠OAH=∠KHO,根据三角形相似的判定得RtAKH∽Rt△HKO,则AK:HK=HK:OK,即AK:4=4:3,求出AK=,易得A点坐标为(,0),然后利用待定系数法求直线AH的解析式; (2)在Rt△OKH中,利用勾股定理计算出OH=5,然后在Rt△OAH中,利用正弦的定义即可得到sin∠HAO的值; (3)过点D作DM⊥EF于M,并延长DM交⊙O于N,连接ON,交BC于T,根据垂径定理得到OM垂直平分DN,即D点与N点关于x轴对称,则N点坐标为(3,-4),ON=5;由DM⊥EF根据等腰三角形的性质可得DN平分∠BDC,即∠CDN=∠BDN,根据圆周角定理的推论得到弧BN=弧CN,然后利用垂径定理的推论可得OT⊥BC,利用等角的余角相等得到∠TGO=∠MNO,在Rt△OMN,OM=3,MN=4,利用正弦的定义即可得到sin∠MNO==,则sin∠CGO=,即sin∠CGO的大小不变. 【解析】 (1)如图,连OH,作HK⊥x轴于k, ∵点D(3,4),点H与点D关于x轴对称, ∴H点坐标为(3,-4), ∵AH为⊙O的切线, ∴OH⊥AH, ∴∠AOH+∠OAH=90°,∠KOH+∠KHO=90°, ∴∠OAH=∠KHO, ∴Rt△AKH∽Rt△HKO, ∴AK:HK=HK:OK,即AK:4=4:3, ∴AK=, ∴OA=OK+AK=3+=, ∴A点坐标为(,0), 设直线HA的函数解析式为y=kx+b, 把H(3,-4),A(,0)代入得, 解得, ∴直线HA的函数解析式为y=x-; (2)在Rt△OKH中,OH==5, 在Rt△OAH中,sin∠HAO===; (3)sin∠CGO的大小不变.理由如下: 过点D作DM⊥EF于M,并延长DM交⊙O于N,连接ON,交BC于T,如图, 则OM垂直平分DN,即D点与N点关于x轴对称, 则N点坐标为(3,-4),ON=5, 又∵△DEF为等腰三角形,DM⊥EF, ∴DN平分∠BDC,即∠CDN=∠BDN, ∴弧BN=弧CN, ∴OT⊥BC, ∴∠TGO+∠GOT=90°, 而∠MNO+∠MON=90°, ∴∠TGO=∠MNO, 在Rt△OMN,OM=3,MN=4, ∴sin∠MNO==, ∴sin∠CGO=. 即当E、F两点在OP上运动时(与点P不重合),sin∠CGO的值不变.
复制答案
考点分析:
相关试题推荐
为了提倡低碳经济,某公司为了更好得节约能源,决定购买一批节省能源的10台新机器.现有甲、乙两种型号的设备,其中每台的价格、工作量如下表.经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元.
(1)求a,b的值;
(2)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供 选择;
(3)在(2)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
甲型乙型
价格(万元/台)ab
产量(吨/月)240180

查看答案
附加题:如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于点E,F是CD的中点,DG是梯形ABCD的高.
(1)求证:四边形AEFD是平行四边形;
(2)设AE=x,四边形DEGF的面积为y,求y关于x的函数关系式.

manfen5.com 满分网 查看答案
我省对义务教育阶段学生的家庭作业也做了总量控制,初中布置语文、数学、外语三个学科的课外作业,作业总量每天不超过1.5小时,为了全面贯彻教育方针,全面提高教育质量,学校教务处对学生回家作业的时间做了一抽样调查,记录了三个年段中部分学生完成作业时间如下:
manfen5.com 满分网
时间分组(小时)频数(人数)频率
0≤t<0.5100.2
0.5≤t<10.4
1≤t<1.5100.2
1.5≤t<20.1
2≤t<2.55
合计1
(1)请你将频数分布表和频数分布直方图补充完整.
(2)上述学生的作业时间的中位数落在哪一组范围内?
(3)请估计全校1400名学生中约有多少学生时间控制在1.5小时以内.
查看答案
如图,已知A (-4,n),B (2,-4)是一次函数y=kx+b的图象和反比例函数manfen5.com 满分网的图象的两个交点;
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求不等式manfen5.com 满分网的解集(请直接写出答案).

manfen5.com 满分网 查看答案
在一次研究性学习活动中,李平同学看到了工人师傅在木板上画一个直角三角形,方法是(如图):画线段AB,分别以点A,B为圆心,以大于manfen5.com 满分网AB的长为半径画弧,两弧相交于点C,连接AC;再以点C为圆心,以AC长为半径画弧,交AC延长线于点D,连接DB,则△ABD就是直角三角形.
(1)请你说明其中的道理;
(2)请利用上述方法作一个直角三角形,使其一个锐角为30°(不写作法,保留作图痕迹).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.