满分5 > 初中数学试题 >

如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B. (1)...

如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连接OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)已知顶点坐标,设抛物线解析式的顶点式y=a(x-2)2+1,把O(0,0)代入即可; (2)∵△MOB与△AOB公共底边OB,最高点A的纵坐标为1,只需要点M的纵坐标为-3即可,将y=-3,代入解析式可求M点坐标; (3)由已知△OAB为等腰三角形,点N在抛物线上,只可能OB=BN,即要求∠AOB=∠BON,A、A'要关于x轴对称,通过计算,不存在. 【解析】 (1)由题意,可设抛物线的解析式为y=a(x-2)2+1, ∵抛物线过原点, ∴a(0-2)2+1=0,a=-. ∴抛物线的解析式为y=-(x-2)2+1=-x2+x. (2)△AOB和所求△MOB同底不等高,且S△MOB=3S△AOB, ∴△MOB的高是△AOB高的3倍,即M点的纵坐标是-3. ∴-3=-x2+x,即x2-4x-12=0. 解之,得x1=6,x2=-2. ∴满足条件的点有两个:M1(6,-3),M2(-2,-3) (3)不存在. 由抛物线的对称性,知AO=AB,∠AOB=∠ABO. 若△OBN与△OAB相似,必有∠BON=∠BOA=∠BNO, 即OB平分∠AON, 设ON交抛物线的对称轴于A'点,则A、A′关于x轴对称, ∴A'(2,-1). ∴直线ON的解析式为y=-x. 由-x=-x2+x,得x1=0,x2=6. ∴N(6,-3). 过N作NE⊥x轴,垂足为E.在Rt△BEN中,BE=2,NE=3, ∴NB==. 又∵OB=4, ∴NB≠OB,∠BON≠∠BNO,△OBN与△OAB不相似. 同理,在对称轴左边的抛物线上也不存在符合条件的N点. 所以在该抛物线上不存在点N,使△OBN与△OAB相似.
复制答案
考点分析:
相关试题推荐
为迎接市运动会,某单位准备用800元订购10套下表中的运动服.
运动服价格(元/套)
男装甲100
男装乙80
女装50
(1)若全部资金用来订购男装甲和女装,问他们可以各订多少套?
(2)若在现有资金800元允许的范围内和运动服总套数不变的前提下,他们想订购表中的三种运动服,其中男装甲和男装乙的套数相同,且女装费用不超过男装甲的费用,求他们能订购三种运动服各多少套?
查看答案
《中学生体质健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76分~85分为良好;60分~75分为及格;59分及以下为不及格.某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.
manfen5.com 满分网
(1)在抽取的学生中不及格人数所占的百分比是______%;
(2)小明按以下方法计算出抽取的学生平均得分是:(90+78+66+42)÷4=69.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式;(不必算出结果)
(3)若不及格学生的总分恰好等于某一个良好等级学生的分数,请估算出该校九年级学生中优秀等级的人数.
查看答案
如图,某幢大楼顶部有一块广告牌CD,甲乙两人分别在相距8米的A、B两处测得D点和C点的仰角分别为45°和60°,且A、B、E三点在一条直线上,若BE=15米,求这块广告牌的高度.(取manfen5.com 满分网≈1.73,计算结果保留整数)

manfen5.com 满分网 查看答案
如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.manfen5.com 满分网
(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?
(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.
查看答案
如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于E,AE=1.求梯形ABCD的高.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.