今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
周数x | 1 | 2 | 3 | 4 |
价格y(元/kg) | 2 | 2.2 | 2.4 | 2.6 |
进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-
x
2+bx+c.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:37
2=1369,38
2=1444,39
2=1521,40
2=1600,41
2=1681)
考点分析:
相关试题推荐
刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见下图①、②.图①中,∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4cm.图③是刘卫同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离______. (填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行?
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形?
请你分别完成上述二个问题的解答过程.
查看答案
如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.
(1)若BE是△DEC的外接圆的切线,求∠C的大小;
(2)当AB=1,AC=2时,求△DEC的外接圆的半径.
查看答案
如图,一次函数y
1=k
1x+2与反比例函数
的图象交于点A(4,m)和B(-8,-2),与y轴交于点C.
(1)k
1=______,k
2=______;
(2)根据函数图象可知,当y
1>y
2时,x的取值范围是______;
(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S
四边形ODAC:S
△ODE=3:1时,求点P的坐标.
查看答案
在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图:
(1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;
(2)如果发了3条箴的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案
某校兴趣小组坐游轮拍摄海河两岸美景.如图,游轮出发点A与望海楼B的距离为300m,在A处测得望海楼B位于A的北偏东30°方向,游轮沿正北方向行驶一段时间后到达C,在C处测得望海楼B位于C的北偏东60°方向,求此时游轮与望海楼之间的距离BC(
取1.73,结果保留整数).
查看答案