为了美化学习环境,加强校园绿化建设,某校计划用不多于5200元的资金购买A、B两种树苗共60棵(可以是同一种树苗),加强校园绿化建设.若购买A种树苗x棵,所需总资金为y元,A、B两种树苗的相关信息如表:
项目 品种 | 单价(元/棵) | 成活率 |
A | 100 | 98% |
B | 60 | 90% |
(1)求y与x之间的函数关系式;
(2)若要使得所购买树苗的成活率不低于95%,有几种选购方案?所用的资金分别是多少?
考点分析:
相关试题推荐
如图,在矩形OABC中,OA、OC两边分别在x轴、y轴的正半轴上,OA=3,OC=2,过OA边上的D点,沿着BD翻折△ABD,点A恰好落在BC边上的点E处,反比例函数
(k>0)在第一象限上的图象经过点E与BD相交于点F.
(1)求证:四边形ABED是正方形;
(2)点F是否为正方形ABED的中心?请说明理由.
查看答案
如图,△ABC中,∠ACB=90°,AC=BC=2,O是AB的中点,经过O、C两点的圆分别与AC、BC相交于D、E两点.
(1)求证:OD=OE;
(2)求:四边形ODCE的面积.
查看答案
“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:
(1)这次抽查的家长总人数为______;
(2)请补全条形统计图和扇形统计图;
(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是______.
查看答案
如图,在四边形ABCD中,AD∥BC,BC=DC,DG∥AB交BC于点G,CF平分∠BCD交DG于点F,BF的延长线交DC于点E.
(1)求证:△BFC≌△DFC;
(2)在不添加辅助线的情况下,在图中找出一条与DE相等的线段,并加以证明.
查看答案