满分5 >
初中数学试题 >
下列图形中,是中心对称图形的是( ) A. B. C. D.
下列图形中,是中心对称图形的是( )
A.
B.
C.
D.
考点分析:
相关试题推荐
2cos45°的值等于( )
A.1
B.
C.
D.2
查看答案
已知抛物线y=a(x-t-2)
2+t
2(a,t是常数,a≠0,t≠0)的顶点是P点,与x轴交于A(2,0)、B两点.
(1)①求a的值;
②△PAB能否构成直角三角形?若能,求出t的值:若不能,说明理由.
(2)若t>0,点F(0,-1),把抛物线y=a(x-t-2)
2+t
2向左平移t个单位后与x轴的正半轴交于M、N两点,当t为何值时,过F、M、N三点的圆的面积最小?并求这个圆面积的最小值.
查看答案
如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是射线CA上的一个动点 (不与A、C重合),DE⊥直线AB于E点,点F是BD的中点,过点F作FH⊥直线AB于H点,连接EF,设AD=x.
(1)①若点D在AC边上,求FH的长(用含x的式子表示);
②若点D在射线CA上,△BEF的面积为S,求S与x的函数关系式,并写出x的取值范围.
(2)若点D在AC边上,点P是AB边上的一个动点,DP与EF相交于O点,当DP+FP的值最小时,猜想DO与PO之间的数量关系,并加以证明.
查看答案
为了美化学习环境,加强校园绿化建设,某校计划用不多于5200元的资金购买A、B两种树苗共60棵(可以是同一种树苗),加强校园绿化建设.若购买A种树苗x棵,所需总资金为y元,A、B两种树苗的相关信息如表:
项目 品种 | 单价(元/棵) | 成活率 |
A | 100 | 98% |
B | 60 | 90% |
(1)求y与x之间的函数关系式;
(2)若要使得所购买树苗的成活率不低于95%,有几种选购方案?所用的资金分别是多少?
查看答案
如图,在矩形OABC中,OA、OC两边分别在x轴、y轴的正半轴上,OA=3,OC=2,过OA边上的D点,沿着BD翻折△ABD,点A恰好落在BC边上的点E处,反比例函数
(k>0)在第一象限上的图象经过点E与BD相交于点F.
(1)求证:四边形ABED是正方形;
(2)点F是否为正方形ABED的中心?请说明理由.
查看答案