满分5 > 初中数学试题 >

在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,...

在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ (0°<θ<180°),得到△A′B′C.
(Ⅰ)如图①,当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;
(Ⅱ)如图②,连接AA′、BB′,设△ACA′和△BCB′的面积分别为S1、S2.求证:S1:S2=1:3;
(Ⅲ)如图③,设AC的中点为E,A′B′的中点为P,AC=a,连接EP.求当θ为何值时,EP的长度最大,并写出EP的最大值 (直接写出结果即可).manfen5.com 满分网
(1)当AB∥CB′时,∠BCB′=∠B=∠B′=30°,则∠A′CD=90°-∠BCB′=60°,∠A′DC=∠BCB′+∠B′=60°,可证:△A′CD是等边三角形; (2)由旋转的性质可证△ACA′和△BCB′,利用相似三角形的面积比等于相似比的平方求解; (3)连接CP,当E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长. (Ⅰ)证明:如图①, ∵AB∥CB', ∴∠BCB'=∠ABC=30°, ∴∠ACA'=30°. 又∵∠ACB=90°, ∴∠A'CD=60°. 又∵∠CA'B'=∠CAB=60°, ∴△A'CD是等边三角形. (Ⅱ) 证明:如图②, ∵AC=A'C,BC=B'C, ∴. 又∵∠ACA'=∠BCB', ∴△ACA'∽△BCB'. ∵=tan30°=, ∴S1:S2=AC2:BC2=1:3. (Ⅲ)当θ=120°时,EP的长度最大,EP的最大值为. 【解析】 如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长, 此时θ=∠ACA′=120°, ∵∠B′=30°,∠A′CB′=90°, ∴A′C=AC=A′B′=a, ∵AC中点为E,A′B′中点为P,∠A′CB′=90° ∴CP=A′B′=a,EC=a, ∴EP=EC+CP=a+a=a.
复制答案
考点分析:
相关试题推荐
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.
(1)填表:(不需化简)
时间  第一个月第二个月 清仓时 
 单价(元) 80  40
 销售量(件) 200  
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
查看答案
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取manfen5.com 满分网=1.732,结果精确到1m)

manfen5.com 满分网 查看答案
已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.
(1)求证:直线AC是圆O的切线;
(2)如果∠ACB=75°,圆O的半径为2,求BD的长.

manfen5.com 满分网 查看答案
上海世博会自2010年5月1日到10月31日,历时184天,预测参观人数达7000万人次,如图是此次盛会在5月中旬入园人数的统计情况.
manfen5.com 满分网
(1)请根据统计图完成下表:
众数中位数极差
入园人数/万
(2)推算世博会期间参观总人数与预测人数相差多少?
查看答案
已知反比例函数manfen5.com 满分网(k为常数,且k≠0)与一次函数y2=x+b(b为常数)的图象在第一象限相交于点A(1,-k+4).
(Ⅰ)求这两个函数的表达式;
(Ⅱ)当x>1时,试判断y1与y2的大小,并说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.