满分5 > 初中数学试题 >

操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计...

操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:
manfen5.com 满分网manfen5.com 满分网
说明:
方案一:图形中的圆过点A、B、C;
方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点
纸片利用率=manfen5.com 满分网×100%
发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.
你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.
请帮忙计算方案二的利用率,并写出求解过程.
探究:
(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.
说明:方案三中的每条边均过其中两个正方形的顶点.
(1)连接AC、BC、AB,由AC=BC=,AB=,根据勾股定理的逆定理,即可求得∠BAC=90°,又由90°的圆周角所对的弦是直径,则可证得AB为该圆的直径; (2)首先证得△ADE≌△EHF与△ADE∽△ACB,即可求得AD与BC的长,求得△ABC的面积,即可求得该方案纸片利用率; (3)利用方案(2)的方法,分析求解即可求得答案. 【解析】 发现:(1)小明的这个发现正确. 理由: 解法一:如图一:连接AC、BC、AB, ∵AC=BC=,AB=2 ∴AC2+BC2=AB2, ∴∠BCA=90°, ∴AB为该圆的直径. 解法二:如图二:连接AC、BC、AB. 易证△AMC≌△BNC, ∴∠ACM=∠CBN. 又∵∠BCN+∠CBN=90°, ∴∠BCN+∠ACM=90°, 即∠BCA=90°, ∴AB为该圆的直径. (2)如图三:∵DE=FH,DE∥FH, ∴∠AED=∠EFH, ∵∠ADE=∠EHF=90°, ∴△ADE≌△EHF(ASA), ∴AD=EH=1. ∵DE∥BC, ∴△ADE∽△ACB, ∴=, ∴=, ∴BC=8, ∴S△ACB=16. ∴该方案纸片利用率=×100%=×100%=37.5%; 探究:(3)过点C作CD⊥EF于D,过点G作GH∥AC,交BC于点H, 设AP=a, ∵PQ∥EK, 易得△APQ∽△KQE,△CEF是等腰三角形,△GHL是等腰三角形, ∴AP:AQ=QK:EK=1:2, ∴AQ=2a,PQ=a, ∴EQ=5a, ∵EC:ED=QE:QK, ∴EC=a, 则PG=5a+a=a,GL=a, ∴GH=a, ∵, 解得:GB=a, ∴AB=a,AC=a, ∴S△ABC=×AB×AC=a2, S展开图面积=6×5a2=30a2, ∴该方案纸片利用率=×100%=×100%=49.86%.
复制答案
考点分析:
相关试题推荐
如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.
(1)求证:MN是半圆的切线;
(2)求证:FD=FG.
(3)若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.

manfen5.com 满分网 查看答案
“校园手机”现象越来越受到社会的关注﹒春节期间,小明随机调查了城区若干名同学和家长对中学生带手机现象的看法.统计整理并制作了如下的统计图:
manfen5.com 满分网
(1)这次的调查对象中,家长有______人;
(2)图②中表示家长“赞成”的圆心角的度数为______度;
(3)开学后,甲、乙两所学校对各自学校所有学生带手机情况进行了统计,发现两校共有2384名学生带手机,且乙学校带手机的学生数是甲学校带手机学生数的 manfen5.com 满分网,求甲、乙两校中带手机的学生数各有多少?
查看答案
下图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象.
(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式;
(2)小明说:“所输出y的值为3时,输入x的值为0或5.”你认为他说的对吗?试结合图象说明.

manfen5.com 满分网 查看答案
某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30cm.
(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;
(2)如图3,当∠BAC=12°时,求AD的长.(结果保留根号)
(参考数据:sin24°≈0.40,cos24°≈0.91,tan24°≈0.46,sin12°≈0.20)manfen5.com 满分网
查看答案
如图,梯形ABCD中,DC∥AB,点E是BC的中点,连接AE并延长与DC的延长线相交于点F,连接BF,AC.求证:四边形ABFC是平行四边形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.