满分5 > 初中数学试题 >

如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象...

manfen5.com 满分网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
(1)因为直线y=x+m过点A,将A点坐标直接代入解析式即可求得m的值;设出二次函数的顶点式,将(3,4)代入即可; (2)由于P和E的横坐标相同,将P点横坐标代入直线和抛物线解析式,可得其纵坐标表达式,h即为二者之差;根据P、E在二者之间,所以可知x的取值范围是0<x<3; (3)先假设存在点P,根据四边形DCEP是平行四形的条件进行推理,若能求出P点坐标,则证明存在点P,否则P点不存在. 【解析】 (1)∵点A(3,4)在直线y=x+m上, ∴4=3+m.(1分) ∴m=1.(2分) 设所求二次函数的关系式为y=a(x-1)2.(3分) ∵点A(3,4)在二次函数y=a(x-1)2的图象上, ∴4=a(3-1)2, ∴a=1.(4分) ∴所求二次函数的关系式为y=(x-1)2. 即y=x2-2x+1.(5分) (2)设P、E两点的纵坐标分别为yP和yE. ∴PE=h=yP-yE(6分) =(x+1)-(x2-2x+1)(7分) =-x2+3x.(8分) 即h=-x2+3x(0<x<3).(9分) (3)存在.(10分) 解法1:要使四边形DCEP是平行四边形,必需有PE=DC.(11分) ∵点D在直线y=x+1上, ∴点D的坐标为(1,2), ∴-x2+3x=2. 即x2-3x+2=0.(12分) 解之,得x1=2,x2=1(不合题意,舍去)(13分) ∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.(14分) 解法2:要使四边形DCEP是平行四边形,必需有BP∥CE.(11分) 设直线CE的函数关系式为y=x+b. ∵直线CE经过点C(1,0), ∴0=1+b, ∴b=-1. ∴直线CE的函数关系式为y=x-1. ∴ 得x2-3x+2=0.(12分) 解之,得x1=2,x2=1(不合题意,舍去) ∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.
复制答案
考点分析:
相关试题推荐
某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:
(1)求yl与y2的函数解析式;
(2)解释图中表示的两种方案是如何付推销费的;
(3)如果你是推销员,应如何选择付费方案.

manfen5.com 满分网 查看答案
如图,⊙O与⊙A相交于C、D两点,A、O分别是两圆的圆心,△ABC内接于⊙O,弦CD交AB于点G,交⊙O的直径AE于点F,连接BD.
求证:
(1)△ACG∽△DBG;
(2)AC2=AG•AB.

manfen5.com 满分网 查看答案
如图,M为正方形ABCD边AB的中点,E是AB延长线上的一点,MN⊥DM,且交∠CBE的平分线于N.
(1)求证:MD=MN;
(2)若将上述条件中的“M为AB边的中点”改为“M为AB边上任意一点”,其余条件不变,则结论“MD=MN”成立吗?如果成立,请证明;如果不成立,说明理由.

manfen5.com 满分网 查看答案
已知二次函数y=ax2+bx+c的图象经过点(0,-9)、(1,-8),对称轴是y轴.
(1)求这个二次函数的解析式;
(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.
查看答案
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.