满分5 > 初中数学试题 >

问题背景 (1)如图,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E...

问题背景
(1)如图,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:
四边形DBFE的面积S=______,△EFC的面积S1=______,△ADE的面积S2=______
探究发现
(2)在(1)中,若BF=a,FC=b,DE与BC间的距离为h.请证明S2=4S1S2
拓展迁移
(3)如图,▱DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.
manfen5.com 满分网
(1)四边形DBFE是平行四边形,利用底×高可求面积;△EFC的面积利用底×高的一半计算;△ADE的面积,可以先过点A作AH⊥BC,交DE于G,交BC于H,即AG是△ADE的高,AH是△ABC的高,利用平行线分线段成比例定理的推论,可知△ADE∽△ABC,利用相似三角形的面积比等于相似比的平方,可求AG,再利用三角形的面积公式计算即可; (2)由于DE∥BC,EF∥AB,可知四边形DBFE是▱,同时,利用平行线分线段成比例定理的推论,可知△ADE∽△ABC,△EFC∽△ABC,从而易得△ADE∽△EFC,利用相似三角形的面积比等于相似比的平方,可得S1:S2=a2:b2,由于S1=bh,那么可求S2,从而易求4S1S2,又S=ah,容易证出结论; (3)过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形,容易证出△DBE≌△GHF,那么△GHC的面积等于8,再利用(2)中的结论,可求▱DBHG的面积,从而可求△ABC的面积. (1)【解析】 S=6,S1=9,S2=1; (2)证明:∵DE∥BC,EF∥AB, ∴四边形DBFE为平行四边形,∠AED=∠C,∠A=∠CEF, ∴△ADE∽△EFC, ∴, ∵, ∴, ∴, 而S=ah,∴S2=4S1S2; (3)【解析】 过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形, ∴∠GHC=∠B,BD=HG,DG=BH, ∵四边形DEFG为平行四边形, ∴DG=EF, ∴BH=EF ∴BE=HF, ∴△DBE≌△GHF, ∴△GHC的面积为5+3=8, 由(2)得,▱DBHG的面积为, ∴△ABC的面积为2+8+8=18. (说明:未利用(2)中的结论,但正确地求出了△ABC的面积,给2分)
复制答案
考点分析:
相关试题推荐
某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植-亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;
(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.
manfen5.com 满分网
查看答案
如图,已知AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,∠D=30°.
(1)求证:CA=CD;
(2)若⊙O的半径为2,求图中阴影部分的面积S.

manfen5.com 满分网 查看答案
某校的一个数学兴趣小组在本校学生中开展主题为“公租房知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,分别记作A、B、C、D;并根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完成),请结合图中所给信息解答下列问题:
manfen5.com 满分网
(1)本次被调查的学生共有______人;在被调查者中“基本了解”的有______人.
(2)将扇形统计图和条形统计图补充完整;
(3)在“非常了解”的调查结果里,初三年级学生共有4人,其中3男1女,在这4人中,打算随机选出2位进行采访,请你用列表法或树状图的方法求出所选两位同学恰好都是男同学的概率?
查看答案
如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.

manfen5.com 满分网 查看答案
先化简,再求值:(2a-b)2-2a(a-b)-(2a2+b2),其中a=manfen5.com 满分网+1,b=manfen5.com 满分网-1.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.