满分5 > 初中数学试题 >

如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,O...

如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线OM上一动点,连接EB,过O作OP⊥EB于P,连接CP,过P作PF⊥PC交射线OS于F.
manfen5.com 满分网
(1)求证:△POC∽△PBF.
(2)当OE=1,OE=2时,BF的长分别为多少?当OE=n时,BF=______
(3)当OE=1时,S△EBF=S1;OE=2时,S△EBF=S2;…,OE=n时,S△EBF=Sn.则S1+S2+…+Sn=______.(直接写出答案)
(1)根据∠OPB=∠CPF,得出∠OPC=∠BPF,再根据∠EOP=∠EOB=90,得出∠EOP=∠OBP,∠POC=∠PBF,即可证出△POC∽△PBF;                 (2)根据△POC∽△PBF,得出=,再根据△OPB∽△EOB,得出OE•BF=OC•OB=4,即可求出BF的长; (3)根据已知条件当OE=1时,S△EBF=S1;OE=2时,S△EBF=S2;…,OE=n时,S△EBF=Sn即可求出S1+S2+…+Sn=2n; 【解析】 (1)证明:∵∠OPB=∠CPF ∴∠OPC=∠BPF, ∵∠EOP=∠EOB=90, ∴∠EOP=∠OBP ∴∠POC=∠PBF ∴△POC∽△PBF;                  (2)根据△POC∽△PBF ∴=, ∵△OPB∽△EOB ∴=, ∴=, ∴OE•BF=OC•OB=4                       ∴当OE=1时,BF=4; 当OE=2时,BF=2, 当OE=n时,BF=; (3)根据题意得; S1+S2+…+Sn=2n; 故答案为:2n.
复制答案
考点分析:
相关试题推荐
阅读理【解析】
给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,则这个矩形是给定矩形的“减半”矩形.如图,矩形A1B1C1D1是矩形ABCD的“减半”矩形.
manfen5.com 满分网
请你解决下列问题:
(1)当矩形的长和宽分别为1,2时,它是否存在“减半”矩形?请作出判断,并请说明理由;
(2)边长为a的正方形存在“减半”正方形吗?如果存在,求出“减半”正方形的边长;如果不存在,说明理由.
查看答案
某中学为了培养学生的社会实践能力,今年“五•一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图.(收入取整数,单位:元)
请你根据以上提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)这50个家庭收入的中位数落在______小组;
(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?
分 组频 数频 率
1000~120030.060
1200~1400120.240
1400~1600180.360
1600~18000.200
1800~20005
2000~220020.040
合计501.000


manfen5.com 满分网 查看答案
如图,已知Rt△ABC,AB=AC,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别交AB,BC于点E、F,CD=CG.
(1)请以图中的点为顶点(不增加其他的点)分别构造两个菱形和两个等腰梯形.那么,构成菱形的四个顶点是____________;构成等腰梯形的四个顶点是____________
(2)请你各选择其中一个图形加以证明.

manfen5.com 满分网 查看答案
在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈manfen5.com 满分网,sin31°≈manfen5.com 满分网

manfen5.com 满分网 查看答案
先化简,再求值:(2a-b)2-2a(a-b)-(2a2+b2),其中a=manfen5.com 满分网+1,b=manfen5.com 满分网-1.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.