满分5 > 初中数学试题 >

如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象...

manfen5.com 满分网如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.
(1)求m的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
(1)因为直线y=x+m过点A,将A点坐标直接代入解析式即可求得m的值;设出二次函数的顶点式,将(3,4)代入即可; (2)由于P和E的横坐标相同,将P点横坐标代入直线和抛物线解析式,可得其纵坐标表达式,h即为二者之差;根据P、E在二者之间,所以可知x的取值范围是0<x<3; (3)先假设存在点P,根据四边形DCEP是平行四形的条件进行推理,若能求出P点坐标,则证明存在点P,否则P点不存在. 【解析】 (1)∵点A(3,4)在直线y=x+m上, ∴4=3+m.(1分) ∴m=1.(2分) 设所求二次函数的关系式为y=a(x-1)2.(3分) ∵点A(3,4)在二次函数y=a(x-1)2的图象上, ∴4=a(3-1)2, ∴a=1.(4分) ∴所求二次函数的关系式为y=(x-1)2. 即y=x2-2x+1.(5分) (2)设P、E两点的纵坐标分别为yP和yE. ∴PE=h=yP-yE(6分) =(x+1)-(x2-2x+1)(7分) =-x2+3x.(8分) 即h=-x2+3x(0<x<3).(9分) (3)存在.(10分) 解法1:要使四边形DCEP是平行四边形,必需有PE=DC.(11分) ∵点D在直线y=x+1上, ∴点D的坐标为(1,2), ∴-x2+3x=2. 即x2-3x+2=0.(12分) 解之,得x1=2,x2=1(不合题意,舍去)(13分) ∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.(14分) 解法2:要使四边形DCEP是平行四边形,必需有BP∥CE.(11分) 设直线CE的函数关系式为y=x+b. ∵直线CE经过点C(1,0), ∴0=1+b, ∴b=-1. ∴直线CE的函数关系式为y=x-1. ∴ 得x2-3x+2=0.(12分) 解之,得x1=2,x2=1(不合题意,舍去) ∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙O于点E.
(1)求证:AE=CE;
(2)若EF与⊙O相切于点E,交AC的延长线于点F,且CD=CF=2cm,求⊙O的直径;
(3)若EF与⊙O相切于点E,点C在线段FD上,且CF:CD=2:1,求sin∠CAB.

manfen5.com 满分网 查看答案
在学校开展的“献爱心”活动中,小东同学打算在暑假期间帮助一家社会福利书店推销A,B,C,D四种书刊.为了解四种书刊的销售情况,小东对五月份这四种书刊的销售量进行了统计,小东通过采集数据,绘制了两幅不完整的统计图表(如图),请你根据所给出的信息解答以下问题:
(1)求m、n的值;
(2)补全频数分布直方图;
(3)若该书店计划订购此四种书刊共6000册,计算B种书刊应采购多少册较合适?
频率分布表:
书刊种类频数频率
   Am0.25
   B10000.20
   C7500.15
   D2000 n


manfen5.com 满分网 查看答案
已知反比例函数manfen5.com 满分网的图象经过点(4,manfen5.com 满分网),若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m).
(1)求平移后的一次函数图象与x轴的交点坐标;
(2)求平移后的一次函数图象与反比例函数的图象的交点坐标.
查看答案
自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:
职工
月销售件数(件)200180
月工资(元)18001700
(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?
(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.