满分5 > 初中数学试题 >

(1)如图1,点P是平行四边形ABCD对角线AC、BD的交点,若S△PAB=S1...

(1)如图1,点P是平行四边形ABCD对角线AC、BD的交点,若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4则S1、S2、S3、S4的关系为S1=S2=S3=S4.请你说明理由;
(2)变式1:如图2,点P是平行四边形ABCD内一点,连接PA、PB、PC、PD.若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,则S1、S2、S3、S4的关系为______
(3)变式2:如图3,点P是四边形ABCD对角线AC、BD的交点若S△PAE=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,则S1、S2、S3、S4的关系为______.请你说明理由.
manfen5.com 满分网
(1)根据平行四边形的对角相互相平分与如果三角形等底等高面积相同,得解; (2)可以根据△ABD≌△CDB求得; (3)由△ABP中AP边上的高与△BCP中CP边上的高相同与△PAD中AP边上的高与△PCD中CP边上的高相同,可得即,即,所以,即S1•S3=S2•S4. 【解析】 (1)∵四边形ABCD是平行四边形, ∴AP=CP, 又∵△ABP中AP边上的高与△BCP中CP边上的高相同, ∴S△PAB=S△PBC, 即S1=S2, 同理可证S2=S3S3=S4, ∴S1=S2=S3=S4; (2)S1+S3=S2+S4; (3)S1•S3=S2•S4; 理由: ∵△ABP中AP边上的高与△BCP中CP边上的高相同, ∴即, ∵△PAD中AP边上的高与△PCD中CP边上的高相同, ∴即, ∴, ∴S1•S3=S2•S4.
复制答案
考点分析:
相关试题推荐
为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
A型B型
价格(万元/台)ab
处理污水量(吨/月)240180
(1)求a,b的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于1860吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.
查看答案
如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度为manfen5.com 满分网(即tan∠PAB=manfen5.com 满分网),且O,A,B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)

manfen5.com 满分网 查看答案
扬州市体育中考现场考试内容为:50米跑(必测);立定跳远、实心球(二选一);坐位体前屈、1分钟跳绳(二选一).考生共有四种选择方案,采取抽样调查的方法调查选择各种方案的学生人数,绘制成如下两幅不完整的统计图.其中有30人选乙方案,选丙方案的有95%的学生发挥正常.请你根据图中的信息解答下列问题:
(1)这次一共调查了多少名学生?
(2)选择考试方案丁的人数在扇形统计图中所占的圆心角为多少度?
(3)补全条形统计图;
(4)请你针对该题,提出一个问题,并且自己解答.

manfen5.com 满分网 查看答案
解方程组:manfen5.com 满分网
查看答案
如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
(1)求证:△ABF≌△EDF;
(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.