满分5 > 初中数学试题 >

已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN...

已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;
当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.
manfen5.com 满分网
根据已知可以利用SAS证明△ABE≌△CBF,从而得出对应角相等,对应边相等,从而得出∠ABE=∠CBF=30°,△BEF为等边三角形,利用等边三角形的性质及边与边之间的关系,即可推出AE+CF=EF. 同理图2可证明是成立的,图3不成立. 【解析】 ∵AB⊥AD,BC⊥CD,AB=BC,AE=CF, 在△ABE和△CBF中, , ∴△ABE≌△CBF(SAS); ∴∠ABE=∠CBF,BE=BF; ∵∠ABC=120°,∠MBN=60°, ∴∠ABE=∠CBF=30°, ∴AE=BE,CF=BF; ∵∠MBN=60°,BE=BF, ∴△BEF为等边三角形; ∴AE+CF=BE+BF=BE=EF; 图2成立,图3不成立. 证明图2. 延长DC至点K,使CK=AE,连接BK, 在△BAE和△BCK中, 则△BAE≌△BCK, ∴BE=BK,∠ABE=∠KBC, ∵∠FBE=60°,∠ABC=120°, ∴∠FBC+∠ABE=60°, ∴∠FBC+∠KBC=60°, ∴∠KBF=∠FBE=60°, 在△KBF和△EBF中, ∴△KBF≌△EBF, ∴KF=EF, ∴KC+CF=EF, 即AE+CF=EF. 图3不成立, AE、CF、EF的关系是AE-CF=EF.
复制答案
考点分析:
相关试题推荐
某仓库甲、乙、丙三辆运货车,每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨,下图是从早晨上班开始库存量y(吨)与时间x(小时)的函数图象,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙工作.
(1)从早晨上班开始,库存每增加2吨,需要几小时;
(2)问甲、乙、丙三辆车,谁是进货车,谁是出货车;
(3)若甲、乙、丙三车一起工作,一天工作8小时,仓库的库存量有什么变化.

manfen5.com 满分网 查看答案
在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)该班共有______名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为______度;
(4)若全校有1830名学生,请计算出“其他”部分的学生人数.manfen5.com 满分网
查看答案
一底角为60°的直角梯形,上底长为10cm,与底垂直的腰长为10cm,以上底或与底垂直的腰为一边作三角形,使三角形的另一边长为15cm,第三个顶点落在下底上.请计算所作的三角形的面积.
查看答案
如图,方格纸中,每个小正方形的边长都是单位1,△ABC与△A1B1C1关于O点成中心对称.
(1)画出将△A1B1C1沿直线DE方向向上平移5个单位得到△A2B2C2
(2)画出将△A2B2C2绕点O顺时针旋转180°得到△A3B3C3
(3)求出四边形CC3C1C2的面积.

manfen5.com 满分网 查看答案
先化简,再求代数式manfen5.com 满分网的值,其中a=3tan30°+1,b=manfen5.com 满分网cos45°.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.