满分5 > 初中数学试题 >

如图.已知A、B两点的坐标分别为A(0,),B(2,0).直线AB与反比例函数的...

如图.已知A、B两点的坐标分别为A(0,manfen5.com 满分网),B(2,0).直线AB与反比例函数manfen5.com 满分网的图象交于点C和点D(-1,a).
(1)求直线AB和反比例函数的解析式.
(2)求∠ACO的度数.
(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少时,OC′⊥AB,并求此时线段AB’的长.

manfen5.com 满分网
(1)设直线AB的解析式为:y=kx+b,把A(0,),B(2,0)分别代入,得到a,b方程组,解出a,b,得到直线AB的解析式;把D点坐标代入直线AB的解析式,确定D点坐标,再代入反比例函数解析式确定m的值; (2)由y=-x+2和y=-联立解方程组求出C点坐标(3,-),利用勾股定理计算出OC的长,得到OA=OC;在Rt△OAB中,利用勾股定理计算AB,得到∠OAB=30°,从而得到∠ACO的度数; (3)由∠ACO=30°,要OC′⊥AB,则∠COC′=90°-30°=60°,即α=60°,得到∠BOB′=60°,而∠OBA=60°,得到△OBB′为等边三角形,于是有B′在AB上,BB′=2,即可求出AB′. 【解析】 (1)设直线AB的解析式为:y=kx+b, 把A(0,),B(2,0)分别代入,得,解得k=-,b=2 ∴直线AB的解析式为:y=-x+2; ∵点D(-1,a)在直线AB上, ∴a=+2=3,即D点坐标为(-1,3), 又∵D点(-1,3)在反比例函数的图象上, ∴m=-1×3=-3, ∴反比例函数的解析式为:y=-; (2)过C点作CE⊥x轴于E,如图, 根据题意得,解得或, ∴C点坐标为(3,-), ∴OE=3,CE=, ∴OC==2, 而OA=2, ∴OA=OC, 又∵OB=2, ∴AB==4, ∴∠OAB=30°, ∴∠ACO=30°; (3)∵∠ACO=30°, 而要OC′⊥AB, ∴∠COC′=90°-30°=60°, 即△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为60°时,OC′⊥AB;如图, ∴∠BOB′=60°, ∴点B'在AB上, 而∠OBA=60°, ∴BB′=2, ∴AB′=4-2=2.
复制答案
考点分析:
相关试题推荐
某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.
(l)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?
查看答案
又到了一年中的春游季节,某班学生利用周末到白塔山去参观“晏阳初博物馆”.下面是两位同学的一段对话:
甲:我站在此处看塔顶仰角为60°;
乙:我站在此处看塔顶仰角为30°;
甲:我们的身高都是1.5m;
乙:我们相距20m.
请你根据两位同学的对话,计算白塔的高度.(精确到1米)

manfen5.com 满分网 查看答案
某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数分布表:
类别频数(人数)频率
文学m0.42
艺术220.11
科普66n
其他28
合计1
(1)表中m=______,n=______
(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?
(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普类读物的学生有多少人?
查看答案
如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.
试猜想线段BE和EC的数量及位置关系,并证明你的猜想.

manfen5.com 满分网 查看答案
先化简再求值manfen5.com 满分网,其中a=manfen5.com 满分网+1.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.