根据当O到AB的距离最大时,OP的值最大,得到O到AB的最大值是AB=1,此时在斜边的中点M上,由勾股定理求出PM,即可求出答案;将△ABP的PA边长改为,另两边长度不变,根据22+22=,得到∠PBA=90°,由勾股定理求出PM即可
【解析】
取AB的中点M,连OM,PM,
在Rt△ABO中,OM==1,在等边三角形ABP中,PM=,
无论△ABP如何运动,OM和PM的大小不变,当OM,PM在一直线上时,P距O最远,
∵O到AB的最大值是AB=1,
此时在斜边的中点M上,
由勾股定理得:PM==,
∴OP=1+,
将△AOP的PA边长改为,另两边长度不变,
∵22+22=,
∴∠PBA=90°,由勾股定理得:PM==,
∴此时OP=OM+PM=1+.
故答案为:1+,1+.