满分5 > 初中数学试题 >

如图所示,抛物线与x轴交于点A(-1,0)、B(3,0)两点,与y轴交于点C(0...

manfen5.com 满分网如图所示,抛物线与x轴交于点A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3).以AB为直径作⊙M,过抛物线上一点P作⊙M的切线PD,切点为D,并与⊙M的切线AE相交于点E,连接DM并延长交⊙M于点N,连接AN、AD.
(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;
(2)若四边形EAMD的面积为manfen5.com 满分网,求直线PD的函数关系式;
(3)抛物线上是否存在点P,使得四边形EAMD的面积等于△DAN的面积?若存在,求出点P的坐标;若不存在,说明理由.
(1)根据A、B、C的坐标即可用待定系数法求出抛物线的解析式,进而可用配方法求出其顶点坐标; (2)连接EM,过D作DF⊥x轴于F;由于ED、EA都是⊙O的切线,根据切线长定理可得EA=ED,易证得△EAM≌△EDM则它们的面积相等,由此可得到S△EAM=2,即可求出EA的长,也就得到了E点的坐标;在Rt△EAM中,根据EA、AM的值,即可求出∠EMA的度数,进而可求出∠DMF的度数,从而在Rt△DMF中,通过解直角三角形求出MF、DF的长,由此求得D点坐标,用待定系数法即可求出直线DP的解析式;(需注意的是AE的长为正值,但是E点的纵坐标有正负两种情况,所以要分类讨论) (3)在△DAN中,由于DN是⊙M的直径,所以DM=MN,则△DAM和△MAN等底同高,所以面积相等,即△DAN的面积是△DAM的2倍;在(2)题中已经求出四边形EAMD的面积是△EAM的2倍,若四边形EAMD的面积等于△DAN的面积,则△DAM、△EAM的面积相等,这两个三角形共用底边AM,所以它们的高相同,由此可证得PD与x轴平行,即PD的解析式为y=±2,联立抛物线的解析式即可求出P点的坐标. 【解析】 (1)因为抛物线与x轴交于点A(-1,0)、B(3,0)两点, 设抛物线的函数关系式为:y=a(x+1)(x-3), ∵抛物线与y轴交于点C(0,-3), ∴-3=a(0+1)(0-3), ∴a=1, 所以,抛物线的函数关系式为:y=x2-2x-3,(2分) 又∵y=(x-1)2-4, 因此,抛物线的顶点坐标为(1,-4);(3分) (2)连接EM,∵EA、ED是⊙M的两条切线, ∴EA=ED,EA⊥AM,ED⊥MD, ∴△EAM≌△EDM(HL), 又∵四边形EAMD的面积为, ∴S△EAM=2, ∴AM•AE=2, 又∵AM=2, ∴AE=2, 因此,点E的坐标为E1(-1,2)或E2(-1,-2),(5分) 当E点在第二象限时,切点D在第一象限, 在直角三角形EAM中,tan∠EMA===, ∴∠EMA=60°, ∴∠DMB=60°, 过切点D作DF⊥AB,垂足为点F, ∴MF=1,DF=, 因此,切点D的坐标为(2,),(6分) 设直线PD的函数关系式为y=kx+b, 将E(-1,2),D(2,)的坐标代入得, 解之,得:, 所以,直线PD的函数关系式为,(7分) 当E点在第三象限时,切点D在第四象限, 同理可求:切点D坐标为(2,-), 直线PD的函数关系式为, 因此,直线PD的函数关系式为或;(8分) (3)若四边形EAMD的面积等于△DAN的面积, 又∵S四边形EAMD=2S△EAM,S△DAN=2S△AMD, ∴S△AMD=S△EAM, ∴E、D两点到x轴的距离相等, ∵PD与⊙M相切, ∴点D与点E在x轴同侧, ∴切线PD与x轴平行, 此时切线PD的函数关系式为y=2或y=-2,(9分) 当y=2时,由y=x2-2x-3得,x=1±; 当y=-2时,由y=x2-2x-3得,x=1±,(11分) 故满足条件的点P的位置有4个,分别是P1(1+,2)、P2(1-,2)、P3(1+,-2)、P4(1-,-2).(12分) 说明:本参考答案给出了一种解题方法,其它正确方法应参考本标准给出相应分数.
复制答案
考点分析:
相关试题推荐
荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.
(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?
(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.
查看答案
小明在寒假中对他所住的小区学生作了有关上海世博会各国展馆的认识度调查,他随机对他所住小区的40名初中学生调查了对中国馆,捷克馆与法国馆认识情况如下图,接着他又到居委会了解他所住的小区学生数情况如下表,
(1)从统计图中可知他所住的小区初中学生中对______馆的认识度最高;
(2)请你估计他所住的小区初中学生中有______人认识捷克馆;
(3)小明用下面的算式manfen5.com 满分网,计算得到结果为525,并由此估计出他所住的小区共有525名学生认识法国馆;
你认为这样的估计正确吗?答:______
为什么?答:______
学  段小  学初  中高  中
人  数240200160
manfen5.com 满分网
查看答案
如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.
(1)求证:AG=C′G;
(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.
manfen5.com 满分网
查看答案
先化简再求值:manfen5.com 满分网,并从-1,1,2中选一个你喜欢的数代入,求原分式的值.
查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.