满分5 >
初中数学试题 >
在实数范围内,有意义,则x的取值范围是( ) A.x≥0 B.x≤0 C.x>0...
在实数范围内,
有意义,则x的取值范围是( )
A.x≥0
B.x≤0
C.x>0
D.x<0
考点分析:
相关试题推荐
3的相反数是( )
A.-3
B.-
C.
D.3
查看答案
问题:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是射线CB上任意一点,△ADE是等边三角形,且点D在∠ACB的内部,连接BE.探究线段BE与DE之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当点D与点C重合时(如图2),请你补全图形.由∠BAC的度数为______,点E落在______,容易得出BE与DE之间的数量关系为______;
(2)当点D在如图3的位置时,请你画出图形,研究线段BE与DE之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.
查看答案
如图,在平面直角坐标系xOy中,抛物线y=mx
2+2mx+n经过点A(-4,0)和点B(0,3),
(1)求抛物线的解析式;
(2)向右平移上述抛物线,若平移后的抛物线仍经过点B,求平移后抛物线的解析式;
(3)在(2)的条件下,记平移后点A的对应点为A′,点B的对应点为B′,试问:在平移后的抛物线上是否存在一点P,使△OA′P的面积与四边形AA′B′B的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
查看答案
已知关于x的方程(k-1)x
2+2kx+k+3=0.
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)当方程有两个相等的实数根时,求关于y的方程y
2+(a-4k)y+a+1=0的整数根(a为正整数).
查看答案
问题背景
(1)如图,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:
四边形DBFE的面积S=______,△EFC的面积S
1=______,△ADE的面积S
2=______.
探究发现
(2)在(1)中,若BF=a,FC=b,DE与BC间的距离为h.请证明S
2=4S
1S
2.
拓展迁移
(3)如图,▱DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.
查看答案