满分5 > 初中数学试题 >

我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况...

我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:
养殖种类成本(万元/亩)销售额(万元/亩)
甲鱼2.43
桂鱼22.5
(1)2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额-成本)
(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?
(3)已知甲鱼每亩需要饲料500㎏,桂鱼每亩需要饲料700㎏,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少㎏?
(1)根据已知列算式求解; (2)先设养殖甲鱼x亩,则养殖桂鱼(30-x)亩列不等式,求出x的取值,再表示出王大爷可获得收益为y万元函数关系式求最大值; (3)设大爷原定的运输车辆每次可装载饲料a㎏,结合(2)列分式方程求解. 【解析】 (1)2010年王大爷的收益为: 20×(3-2.4)+10×(2.5-2) =17(万元), 答:王大爷这一年共收益17万元. (2)设养殖甲鱼x亩,则养殖桂鱼(30-x)亩 则题意得2.4x+2(30-x)≤70 解得x≤25, 又设王大爷可获得收益为y万元, 则y=0.6x+0.5(30-x), 即y=x+15. ∵函数值y随x的增大而增大, ∴当x=25时,可获得最大收益. 答:要获得最大收益,应养殖甲鱼25亩,桂鱼5亩. (3)设大爷原定的运输车辆每次可装载饲料a㎏ 由(2)得,共需要饲料为500×25+700×5=16000(㎏), 根据题意得-=2, 解得a=4000, 把a=4000代入原方程公分母得,2a=2×4000=8000≠0, 故a=4000是原方程的解. 答:王大爷原定的运输车辆每次可装载饲料4000㎏.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.
(1)求该抛物线的解析式.
(2)若过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,
求此直线的解析式.

manfen5.com 满分网 查看答案
在完全相同的五张卡片上分别写上1,2,3,4,5五个数字后,装入一个不透明的口袋内搅匀.
(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是______
(2)从口袋内任取一张卡片记下数字后放回,搅匀后再从中任取一张,求两张卡片上数字和为5的概率.
查看答案
如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,
求证:MO∥BC.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在平面直角坐标系中,△ABC的顶点坐标为A(-2,3)、B(-3,2)、C(-1,1).
(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1
(2)画出△A1B1C1绕原点旋转180°后得到的△A2B2C2
(3)△A′B′C′与△ABC是位似图形,请写出位似中心的坐标:______
(4)顺次连接C、C1、C′、C2,所得到的图形是轴对称图形吗?
查看答案
如图,已知AD是△ABC的角平分线,在不添加任何辅助线的前提下,要使△AED≌△AFD,需添加一个条件是:______,并给予证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.