已知:抛物线y=ax
2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF的交点.
(1)求证:△BCF≌△DCE;
(2)求证:BF=DE,BF⊥DE;
(3)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.
查看答案
△ABC在方格纸中位置如图所示
(1)请在方格纸上建立平面直角坐标系,使得A、B两点的坐标分别为A(2,-1)、B(1,-4),并求出C点的坐标;
(2)作出△ABC关于横轴对称的△A
1B
1C
1,再作出△ABC以坐标原点为旋转中心、旋转180°后的△A
2B
2C
2,并写C
1,C
2两点的坐标;
(3)观察△A
1B
1C
1和△A
2B
2C
2,其中的一个三角形能否由另一个三角形经过某种变换而得到?若能,请指出什么变换.
查看答案
某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)
(1)请把条形统计图补充完整;
(2)样本中D级的学生人数占全班学生人数的百分比是______;
(3)扇形统计图中A级所在的扇形的圆心角度数是______;
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为______人.
查看答案
为净化空气,美化环境,海口市在许多街道和居民小区都种上了玉兰和樟树,某住宅区内,计划投资1.8万元种玉兰树和樟树共80棵,已知某苗甫负责种以上两种树苗的价格分别为:玉兰树300元/棵,樟树200元/棵,问可种玉兰树和樟树各多少棵?
查看答案
(1)计算:
.
(2)解方程:
.
查看答案