满分5 > 初中数学试题 >

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两...

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

manfen5.com 满分网
(1)已知抛物线过C(0,-2)点,那么c=-2;根据对称轴为x=-1,因此-=-1,然后将A点的坐标代入抛物线中,通过联立方程组即可得出抛物线的解析式. (2)本题的关键是确定P点的位置,由于A是B点关于抛物线对称轴的对称点,因此连接AC与抛物线对称轴的交点就是P点.可根据A,C的坐标求出AC所在直线的解析式,然后根据得出的一次函数的解析式求出与抛物线对称轴的交点即可得出P点的坐标. (3)△PDE的面积=△OAC的面积-△PDC的面积-△ODE的面积-△AEP的面积 △OAC中,已知了A,C的坐标,可求出△OAC的面积. △PDC中,以CD为底边,P的横坐标的绝对值为高,即可表示出△PDC的面积. △ODE中,可先用m表示出OD的长,然后根据△ODE与△OAC相似,求出OE的长,根据三角形的面积计算公式可用m表示出△ODE的面积. △PEA中,以AE为底边(可用OE的长表示出AE),P点的纵坐标的绝对值为高,可表示出△PEA的面积. 由此可表示出△ODE的面积,即可得出关于S,m的函数关系式.然后根据函数的性质求出三角形的最大面积以及对应的m的值. 【解析】 (1)由题意得, 解得, ∴此抛物线的解析式为y=x2+x-2. (2)连接AC、BC. 因为BC的长度一定, 所以△PBC周长最小,就是使PC+PB最小. B点关于对称轴的对称点是A点,AC与对称轴x=-1的交点即为所求的点P. 设直线AC的表达式为y=kx+b, 则, 解得, ∴此直线的表达式为y=-x-2, 把x=-1代入得y=- ∴P点的坐标为(-1,-). (3)S存在最大值, 理由:∵DE∥PC,即DE∥AC. ∴△OED∽△OAC. ∴,即, ∴OE=3-m,OA=3,AE=m, ∴S=S△OAC-S△OED-S△AEP-S△PCD =×3×2-×(3-m)×(2-m)-×m×-×m×1 =-m2+m=-(m-1)2+ ∵ ∴当m=1时,S最大=.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF的交点.
(1)求证:△BCF≌△DCE;
(2)求证:BF=DE,BF⊥DE;
(3)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.

manfen5.com 满分网 查看答案
△ABC在方格纸中位置如图所示
(1)请在方格纸上建立平面直角坐标系,使得A、B两点的坐标分别为A(2,-1)、B(1,-4),并求出C点的坐标;
(2)作出△ABC关于横轴对称的△A1B1C1,再作出△ABC以坐标原点为旋转中心、旋转180°后的△A2B2C2,并写C1,C2两点的坐标;
(3)观察△A1B1C1和△A2B2C2,其中的一个三角形能否由另一个三角形经过某种变换而得到?若能,请指出什么变换.

manfen5.com 满分网 查看答案
某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)
(1)请把条形统计图补充完整;
(2)样本中D级的学生人数占全班学生人数的百分比是______
(3)扇形统计图中A级所在的扇形的圆心角度数是______
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数约为______人.manfen5.com 满分网
查看答案
为净化空气,美化环境,海口市在许多街道和居民小区都种上了玉兰和樟树,某住宅区内,计划投资1.8万元种玉兰树和樟树共80棵,已知某苗甫负责种以上两种树苗的价格分别为:玉兰树300元/棵,樟树200元/棵,问可种玉兰树和樟树各多少棵?
查看答案
(1)计算:manfen5.com 满分网
(2)解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.