满分5 >
初中数学试题 >
相传古印度一座梵塔圣殿中,铸有一片巨大的黄铜板,之上树立了三米高的宝石柱,其中一...
相传古印度一座梵塔圣殿中,铸有一片巨大的黄铜板,之上树立了三米高的宝石柱,其中一根宝石柱上插有中心有孔的64枚大小两两相异的一寸厚的金盘,小盘压着较大的盘子,如图,把这些金盘全部一个一个地从1柱移到3柱上去,移动过程不许以大盘压小盘,不得把盘子放到柱子之外.移动之日,喜马拉雅山将变成一座金山.
设h(n)是把n个盘子从1柱移到3柱过程中移动盘子之最少次数
n=1时,h(1)=1;
n=2时,小盘→2柱,大盘→3柱,小盘从2柱→3柱,完成.即h(2)=3;
n=3时,小盘→3柱,中盘→2柱,小盘从3柱→2柱.[即用h(2)种方法把中、小两盘移到2柱,大盘3柱;再用h(2)种方法把中、小两盘从2柱3柱,完成;
我们没有时间去移64个盘子,但你可由以上移动过程的规律,计算n=6时,h(6)=( )
A.11
B.31
C.63
D.127
考点分析:
相关试题推荐
我们知道:一个正整数p(p>1)的正因数有两个:1和p,除此之外没有别的正因数,这样的数p称为素数,也称质数.如图是某年某月的日历表,日期31个数中所有的素数的中位数是( )
A.11
B.12
C.13
D.17
查看答案
二次函数的图象如图,则反比例函数y=-
与一次函数y=bx+c的图象在同一坐标系内的图象大致是( )
A.
B.
C.
D.
查看答案
在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的对边分别记为a,b,c,倍角三角形的三边a,b,c有什么关系呢?让我们一起来探索.
(1)我们先从特殊的倍角三角形入手研究.请你结合图形填空:
三三角形角形 | 角的已知量 | | |
图2 | ∠A=2∠B=90° | | |
图3 | ∠A=2∠B=60° | | |
(2)如图4,对于一般的倍角△ABC,若∠CAB=2∠CBA,∠CAB、∠CBA、∠C的对边分别记为a,b,c,a,b,c,三边有什么关系呢?请你作出猜测,并结合图4给出的辅助线提示加以证明;
(3)请你运用(2)中的结论解决下列问题:若一个倍角三角形的两边长为5,6,求第三边长. (直接写出结论即可)
查看答案
如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=
经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S
△ACQ=S,直接写出S与t之间的函数关系式.
查看答案
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.
(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;
(2)如图(2),连接A′A、B′B,设△ACA′和△BCB′的面积分别为S
△ACA′和S
△BCB′,求证:S
△ACA′:S
△BCB′=1:3.
查看答案