满分5 > 初中数学试题 >

如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE....

如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.
manfen5.com 满分网manfen5.com 满分网
(1)利用已知条件,可证出△BCE≌△DCF(SAS),即CE=CF. (2)借助(1)的全等得出∠BCE=∠DCF,∴∠GCF=∠BCE+∠DCG=90°-∠GCE=45°,即∠GCF=∠GCE,又因为CE=CF,CG=CG,∴△ECG≌△FCG,∴EG=GF,∴GE=DF+GD=BE+GD. (3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形). 再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理可求出DE. (1)证明:在正方形ABCD中, ∵BC=CD,∠B=∠CDF,BE=DF, ∴△CBE≌△CDF. ∴CE=CF. (2)【解析】 GE=BE+GD成立. ∵△CBE≌△CDF, ∴∠BCE=∠DCF. ∴∠ECD+∠ECB=∠ECD+∠FCD. 即∠ECF=∠BCD=90°. 又∠GCE=45°, ∴∠GCF=∠GCE=45°. ∵CE=CF,∠GCF=∠GCE,GC=GC, ∴△ECG≌△FCG. ∴EG=GF. ∴GE=DF+GD=BE+GD. (3)【解析】 过C作CG⊥AD,交AD延长线于G, 在直角梯形ABCD中, ∵AD∥BC,∠A=∠B=90°, 又∠CGA=90°,AB=BC, ∴四边形ABCG为正方形. ∴AG=BC=12. 已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG, 设DE=x,则DG=x-4, ∴AD=AG-DG=16-x,AE=AB-BE=12-4=8. 在Rt△AED中 ∵DE2=AD2+AE2,即x2=(16-x)2+82 解得:x=10. ∴DE=10.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与y轴交于点C,与x轴交于A,B两点,点B的坐标为(3,0),直线y=-x+3恰好经过B,C两点
(1)写出点C的坐标;
(2)求出抛物线y=x2+bx+c的解析式,并写出抛物线的对称轴和点A的坐标;
(3)点P在抛物线的对称轴上,抛物线顶点为D且∠APD=∠ACB,求点P的坐标.

manfen5.com 满分网 查看答案
如图,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A的距离AB.

manfen5.com 满分网 查看答案
一天晚上,身高1.6米的张雅婷发现:当她离路灯底脚(B)12米时,自己的影长(CD)刚好为3米,当她继续背离路灯的方向再前进2米(到达点F)时,她说自己的影长是(FH)5米.你认为张雅婷说的对吗?若她说的对,请你说明理由;若她说的不对,请你帮她求出她的影长(FH).

manfen5.com 满分网 查看答案
如图,已知CD是⊙O的直径,AC⊥CD,垂足为C,弦DE∥OA,直线AE、CD相交于点B.
(1)求证:直线AB是⊙O的切线.
(2)当AC=1,BE=2,求tan∠OAC的值.

manfen5.com 满分网 查看答案
如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向向点B匀速运动,若y=AE2-EF2,则y与动点F的运动时间x(0≤x≤6)秒的函数关系式为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.