如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax
2+bx+c经过点A、B和D
.
(1)求抛物线的解析式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同
时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ
2(cm
2)
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取
时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
考点分析:
相关试题推荐
现有一批设备需由景德镇运往相距300千米的南昌,甲、乙两车分别以80千米/时和60千米/时的速度同时出发,甲车在距南昌130千米的A处发现有部分设备丢在B处,立即以原速返回到B处取回设备,为了还能比乙车提前到达南昌,开始加速以100千米/时的速度向南昌前进,设AB的距离为a千米.
(1)写出甲车将设备从景德镇运到南昌所经过的路程(用含a的代数式表示);
(2)若甲车还能比乙车提前到达南昌,求a的取值范围.(不考虑其它因素)
查看答案
如图,在圆内接四边形ABCD中,CD为∠BCA的外角的平分线,F为
上一点,BC=AF,延长DF与BA的延长线交于E.
(1)求证:△ABD为等腰三角形.
(2)求证:AC•AF=DF•FE.
查看答案
如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:
(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,
≈1.732).
查看答案
有3张扑克牌,分別是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.
(1)先后两次抽得的数字分别记为s和t,求|s-t|≥l的概率.
(2)甲、乙两人做游戏,现有两种方案.A方案:若两次抽得相同花色则甲胜,否则乙胜.B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?
查看答案
某校部分男生分3组进行引体向上训练.对训练前后的成绩进行统计分析,相应数据的统计图如下.
(1)求训练后第一组平均成绩比训练前增长的百分数;
(2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由;
(3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点.
查看答案