已知抛物线y=ax
2+bx+3经过A(-3,0),B(-1,0)两点如图1,顶点为M.
(1)a、b的值;
(2)设抛物线与y轴的交点为Q如图1,直线y=-2x+9与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线
扫过的区域的面积;
(3)设直线y=-2x+9与y轴交于点C,与直线OM交于点D如图2.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标的取值范围;
(4)如图3,将抛物线平移,当顶点M移至原点时,过点Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.试探究:在y轴的负半轴上是否存在点P,使得∠EPQ=∠QPF?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案