满分5 > 初中数学试题 >

已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点...

已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式.
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式.
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形.
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示);若不存在,请说明理由.
manfen5.com 满分网
(1)利用抛物线y=(x-2)2+1的与y轴交于点A(0,5),它的顶点为点B(2,1),求出直线解析式即可; (2)首先得出点A的坐标为(0,-3),以及点C的坐标为(0,3),进而求出BE=2,得出顶点B的坐标求出解析式即可; (3)①由已知可得A坐标为(0,b),C点坐标为(0,-b),以及n=-2m+b,即点B点的坐标为(m,-2m+b),利用勾股定理求出; ②利用①中B点坐标,以及BD的长度即可得出P点的坐标. 【解析】 (1)由抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B, ∴抛物线y=(x-2)2+1的与y轴交于点A(0,5),它的顶点为点B(2,1), 设所求直线解析式为y=kx+b, ∴, 解得:, ∴所求直线解析式为y=-2x+5; (2)如图,作BE⊥AC于点E,由题意得四边形ABCD是平行四边形,点A的坐标为(0,-3), 点C的坐标为(0,3), 可得:AC=6, ∵平行四边形ABCD的面积为12, ∴S△ABC=6即S△ABC=AC•BE=6, ∴BE=2, ∵m>0,即顶点B在y轴的右侧,且在直线y=x-3上, ∴顶点B的坐标为(2,-1), 又抛物线经过点A(0,-3), ∴a=-, ∴y=-(x-2)2-1; (3)①如图,作BF⊥x轴于点F, 由已知可得A坐标为(0,b),C点坐标为(0,-b), ∵顶点B(m,n)在直线y=-2x+b(b>0)上, ∴n=-2m+b,即点B点的坐标为(m,-2m+b), 在矩形ABCD中,CO=BO. ∴b=, ∴b2=m2+4m2-4mb+b2, ∴m=b, n=-2×b+b=-b, ②∵B点坐标为(m,n),即(b,-b), ∴BO==b, ∴BD=2b, 当BD=BP, ∴PF=2b-b=b, ∴P点的坐标为(b,b); 如图3,当DP=PB时, 过点D作DE⊥PB,于点E, ∵B点坐标为(b,-b), ∴D点坐标为(-b,b), ∴DE=b,BE=b,设PE=x, ∴DP=PB=b+x, ∴DE2+PE2=DP2, ∴+x2=(b+x)2, 解得:x=b, ∴PF=PE+EF=b+b=b, ∴此时P点坐标为:(b,b); 同理P可以为(b,-b);(b,b), 故P点坐标为:(b,b);(b,b);(b,-b);(b,b).
复制答案
考点分析:
相关试题推荐
情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是______,∠CAC′=______°.manfen5.com 满分网
manfen5.com 满分网
问题探究manfen5.com 满分网
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
查看答案
为发展旅游经济,我市某景区对门票釆用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分 的游客打b折售票.设某旅游团人数为x人,非节假日购票款为y1(元),节假日购票款为y2(元).y1与y2之间的函数图象如图所示.
(1)观察图象可知:a=______; b=______; m=______
(2)直接写出y1,y2与x之间的函数关系式;
(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A,B两个团队合计50人,求A,B两个团队各有多少人?

manfen5.com 满分网 查看答案
我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:
养殖种类成本(万元/亩)销售额(万元/亩)
甲鱼2.43
桂鱼22.5
(1)2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额-成本)
(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?
(3)已知甲鱼每亩需要饲料500㎏,桂鱼每亩需要饲料700㎏,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少㎏?
查看答案
如图,正比例函数y1=k1x与反比例函数y2=manfen5.com 满分网 相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且S△BDO=4.过点A的一次函数y3=k3x+b与反比例函数的图象交于另一点C,与x轴交于点E(5,0).
(1)求正比例函数y1、反比例函数y2和一次函数y3的解析式;
(2)结合图象,求出当k3x+b>manfen5.com 满分网>k1x时x的取值范围.

manfen5.com 满分网 查看答案
如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1
(1)证明:△A1AD1≌△CC1B;
(2)若∠ACB=30°,试问当点C1在线段AC上的什么位置时,四边形ABC1D1是菱形.(直接写出答案)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.