满分5 > 初中数学试题 >

如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与B...

如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.
(1)求证:BF是⊙O的切线;
(2)若AD=4,manfen5.com 满分网,求BC的长.

manfen5.com 满分网
(1)连接BD,因AD⊥AB,所以BD是直径.证明BF⊥DB即可. (2)作AG⊥BC于点G.由(1)中结论∠D=∠2=∠3,分别把这三个角转化到直角三角形中,根据,求相关线段的长. 证明:(1)如图,连接BD. ∵AD⊥AB,D在圆O上, ∴∠DAB=90°, ∴DB是⊙O的直径. ∴∠1+∠2+∠D=90°. 又∵AE=AF, ∴BE=BF,∠2=∠3. ∵AB=AC, ∴∠D=∠C=∠2=∠3. ∴∠1+∠2+∠3=90°. 即OB⊥BF于B. ∴直线BF是⊙O的切线.                               (4分) (2)作AG⊥BC于点G. ∵∠D=∠2=∠3, ∴. 在Rt△ABD中,∠DAB=90°,AD=4,, ∴,. 在Rt△ABG中,∠AGB=90°,AB=3,, ∴. ∵AB=AC, ∴.                                  (8分)
复制答案
考点分析:
相关试题推荐
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
查看答案
如图,直线y=manfen5.com 满分网x+1分别交x轴,y轴于点A,C,点P是直线AC与双曲线y=manfen5.com 满分网在第一象限内的交点,PB⊥x轴,垂足为点B,△APB的面积为4.
(1)求点P的坐标;
(2)求双曲线的解析式及直线与双曲线另一交点Q的坐标.

manfen5.com 满分网 查看答案
某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.
(1)求出树高AB;
(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)

manfen5.com 满分网 查看答案
某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
(1)该年级报名参加丙组的人数为______
(2)该年级报名参加本次活动的总人数______,并补全频数分布直方图;
(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?

manfen5.com 满分网 查看答案
如图,AB∥CD,∠ACD=72°.
(1)用直尺和圆规作∠C的平分线CE,交AB于E,并在CD上取一点F,使AC=AF,再连接AF,交CE于K;(要求保留作图痕迹,不必写出作法)
(2)依据现有条件,直接写出图中所有相似的三角形,(图中不再增加字母和线段,不要求证明).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.