满分5 > 初中数学试题 >

如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点A和点B,与y轴相交...

如图,已知抛物线y=x2-ax+a2-4a-4与x轴相交于点A和点B,与y轴相交于点D(0,8),直线DC平行于x轴,交抛物线于另一点C,动点P以每秒2个单位长度的速度从C点出发,沿C→D运动,同时,点Q以每秒1个单位长度的速度从点A出发,沿A→B运动,连接PQ、CB,设点P运动的时间为t秒.
(1)求a的值;
(2)当四边形ODPQ为矩形时,求这个矩形的面积;
(3)当四边形PQBC的面积等于14时,求t的值.
(4)当t为何值时,△PBQ是等腰三角形?(直接写出答案)

manfen5.com 满分网
(1)把点D(0,8)代入抛物线y=x2-ax+a2-4a-4解方程即可解答; (2)利用(1)中求得的抛物线,求得点A、B、C、D四点坐标,再利用矩形的判定与性质解得即可; (3)利用梯形的面积计算方法解决问题; (4)只考虑PQ=PB,其他不符合实际情况,即可找到问题的答案. 【解析】 (1)把点(0,8)代入抛物线y=x2-ax+a2-4a-4得, a2-4a-4=8, 解得:a1=6,a2=-2(不合题意,舍去), 因此a的值为6; (2)由(1)可得抛物线的解析式为y=x2-6x+8, 当y=0时,x2-6x+8=0, 解得:x1=2,x2=4, ∴A点坐标为(2,0),B点坐标为(4,0), 当y=8时,x2-6x+8=8, 解得:x=0或x=6, ∴D点的坐标为(0,8),C点坐标为(6,8), DP=6-2t,OQ=2+t, 当四边形OQPD为矩形时,DP=OQ, 2+t=6-2t,t=,OQ=2+=, S=8×=, 即矩形OQPD的面积为; (3)四边形PQBC的面积为(BQ+PC)×8,当此四边形的面积为14时, (2-t+2t)×8=14, 解得t=(秒), 当t=时,四边形PQBC的面积为14; (4)过点P作PE⊥AB于E,连接PB, 当QE=BE时,△PBQ是等腰三角形, ∵CP=2t, ∴DP=6-2t, ∴BE=OB-PD=4-(6-2t)=2t-2, ∵OQ=2+t, ∴QE=PD-OQ=6-2t-(2+t)=4-3t, ∴4-3t=2t-2, 解得:t=, ∴当t=时,△PBQ是等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.
(1)求证:BF是⊙O的切线;
(2)若AD=4,manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
查看答案
如图,直线y=manfen5.com 满分网x+1分别交x轴,y轴于点A,C,点P是直线AC与双曲线y=manfen5.com 满分网在第一象限内的交点,PB⊥x轴,垂足为点B,△APB的面积为4.
(1)求点P的坐标;
(2)求双曲线的解析式及直线与双曲线另一交点Q的坐标.

manfen5.com 满分网 查看答案
某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.
(1)求出树高AB;
(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)

manfen5.com 满分网 查看答案
某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
(1)该年级报名参加丙组的人数为______
(2)该年级报名参加本次活动的总人数______,并补全频数分布直方图;
(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.