满分5 > 初中数学试题 >

如图,已知在平面直角坐标系中,平行四边形ABCD顶点A(0,0),C(10,4)...

如图,已知在平面直角坐标系中,平行四边形ABCD顶点A(0,0),C(10,4),直线y=ax-2a-1将平行四边形ABCD分成面积相等的两部分,求a的值.

manfen5.com 满分网
连接AC、BD,AC与BD相交于点M,过点M作ME⊥x轴于点E,过点C作CF⊥x轴于点F,由直线将平行四边形分成面积相等的两部分,得到此直线过平行四边形对角线的交点M,接下来求M的坐标,由平行四边形的对角线互相平分,得到M为AC的中点,再由ME与CF都与x轴垂直,得到ME与CF平行,可得出两对同位角相等,根据两对对应角相等的两三角形相似,可得三角形AME与三角形ACF相似,由M为AC的中点得到相似三角形的相似比为1:2,可得E为AF的中点,由C的坐标得到AF与CF的长,又ME为三角形ACF的中位线,根据中位线定理得到ME为CF的一半,求出ME的长,由AE为AF的一半,求出AE的长,确定出M的坐标,把M的坐标代入直线方程中,得到关于a的方程,求出方程的解即可得到a的值. 【解析】 连接AC、BD,AC与BD相交于点M,过点M作ME⊥x轴于点E,过点C作CF⊥x轴于点F, ∵C(10,4), ∴AF=10,CF=4,…(2分) ∵四边形ABCD为平行四边形, ∴AM=CM,即=, ∵ME⊥x轴,CF⊥x轴, ∴∠MEA=∠CFA=90°, ∴ME∥CF, ∴∠AME=∠ACF,∠AEM=∠AFC, ∴△AME∽△ACF, ∴==,即E为AF的中点, ∴ME为△AFC的中位线,…(4分) ∴AE=AF=5,ME=CF=2, ∴M(5,2),…(6分) ∵直线y=ax-2a-1将平行四边形ABCD分成面积相等的两部分, ∴直线y=ax-2a-1经过点M,…(8分) 将M(5,2)代入y=ax-2a-1得:a=1.…(9分)
复制答案
考点分析:
相关试题推荐
如图,AB、CD是两条高速公路,M、N是两个村庄,现建造一个货物中转站,要求到AB、CD的距离相等,且到两个村庄的距离也相等.(不写作法,保留作图痕迹)

manfen5.com 满分网 查看答案
先化简,再计算:(1+manfen5.com 满分网)÷manfen5.com 满分网,其中a=manfen5.com 满分网-3.
查看答案
解方程组manfen5.com 满分网,并求manfen5.com 满分网的值.
查看答案
计算:manfen5.com 满分网
查看答案
若m>n>0,m2+n2=4mn,则manfen5.com 满分网的值等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.