如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.
(1)如图②,若M为AD边的中点,
①△AEM的周长=______cm;
②求证:EP=AE+DP;
(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
考点分析:
相关试题推荐
杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:
当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;
当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).
问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?
查看答案
如图,抛物线y=
x
2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上.
(1)求A,B的坐标;
(2)以AC,CB为一组邻边作▱ABCD,则点D关于轴的对称点D′是否在该抛物线上?请说明理由.
查看答案
有一种传染性疾病,蔓延速度极快.据统汁,在人群密集的某城市里,通常情况下,每人一天能传染给若干人,通过计算解答下面的问题:
(1)现有一人患了这种疾病,开始两天共有225人患上此病,求每天一人传染了几人?
(2)两天后,人们有所觉察,这样平均一个人一天以少传播5人的速度在递减,求再过两天共有多少人患有此病?
查看答案
如图,已知在平面直角坐标系中,平行四边形ABCD顶点A(0,0),C(10,4),直线y=ax-2a-1将平行四边形ABCD分成面积相等的两部分,求a的值.
查看答案
如图,AB、CD是两条高速公路,M、N是两个村庄,现建造一个货物中转站,要求到AB、CD的距离相等,且到两个村庄的距离也相等.(不写作法,保留作图痕迹)
查看答案