满分5 > 初中数学试题 >

如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD...

如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.
(1)如图②,若M为AD边的中点,
①△AEM的周长=______cm;
②求证:EP=AE+DP;
(2)随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
manfen5.com 满分网
(1)①由折叠知BE=EM.AE+EM+AM=AE+EB+AM=AB+AM.根据边长及中点易求周长;②延长EM交CD延长线于Q点.可证△AEM≌△DQM,得AE=DQ,EM=MQ.所以PM垂直平分EQ,得EP=PQ,得证; (2)不变化.可证△AEM∽△DMP,两个三角形的周长的比是AE:MD,设AE=x,根据勾股定理可以用x表示出MD的长与△MAE的周长,根据周长的比等于相似比,即可求解. 【解析】 (1)由折叠知BE=EM,∠B=∠EMP=90°. ①△AEM的周长=AE+EM+AM=AE+EB+AM=AB+AM. ∵AB=4,M是AD中点, ∴△AEM的周长=4+2=6(cm); ②现证明EP=AE+PD 方法一:取EP的中点G,则在梯形AEPD中,MG为中位线, ∴MG=(AE+PD), 在Rt△EMP中,MG为斜边EP的中线, ∴MG=EP, ∴EP=AE+PD. 方法二:延长EM交CD延长线于Q点. ∵∠A=∠MDQ=90°,AM=DM,∠AME=∠DMQ, ∴△AME≌△DMQ. ∴AE=DQ,EM=MQ. 又∵∠EMP=∠B=90°, ∴PM垂直平分EQ,有EP=PQ. ∵PQ=PD+DQ, ∴EP=AE+PD. (2)△PDM的周长保持不变. 设AM=x,则MD=4-x. 由折叠性质可知,EM=4-AE, 在Rt△AEM中,AE2+AM2=EM2,即AE2+x2=(4-AE)2, 整理得:AE2+x2=16-8AE+AE2, ∴AE=(16-x2), 又∵∠EMP=90°,∴∠AME+∠DMP=90°. ∵∠AME+∠AEM=90°,∴∠AEM=∠DMP. 又∵∠A=∠D, ∴△PDM∽△MAE. ∴ ∴C△PDM=C△MAE•=(4+x)•=8. ∴△PDM的周长保持不变.
复制答案
考点分析:
相关试题推荐
杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:
manfen5.com 满分网
当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;
当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).
问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?
查看答案
如图,抛物线y=manfen5.com 满分网x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上.
(1)求A,B的坐标;
(2)以AC,CB为一组邻边作▱ABCD,则点D关于轴的对称点D′是否在该抛物线上?请说明理由.

manfen5.com 满分网 查看答案
有一种传染性疾病,蔓延速度极快.据统汁,在人群密集的某城市里,通常情况下,每人一天能传染给若干人,通过计算解答下面的问题:
(1)现有一人患了这种疾病,开始两天共有225人患上此病,求每天一人传染了几人?
(2)两天后,人们有所觉察,这样平均一个人一天以少传播5人的速度在递减,求再过两天共有多少人患有此病?
查看答案
如图,已知在平面直角坐标系中,平行四边形ABCD顶点A(0,0),C(10,4),直线y=ax-2a-1将平行四边形ABCD分成面积相等的两部分,求a的值.

manfen5.com 满分网 查看答案
如图,AB、CD是两条高速公路,M、N是两个村庄,现建造一个货物中转站,要求到AB、CD的距离相等,且到两个村庄的距离也相等.(不写作法,保留作图痕迹)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.