满分5 > 初中数学试题 >

如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的...

如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.
(1)求证:AE⊥DE;
(2)计算:AC•AF的值.

manfen5.com 满分网
(1)连接OA、OB,证明△ABD为等边三角形后根据三心合一的定理求出∠OAC=60°,求出四边形ABDF内接于圆O,利用切线的性质求出AE⊥DE; (2)由1可得△ABD为等边三角形,易证△ADF∽△ACD,可得AD2=AC•AF. (1)证明:在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点, ∴∠ABD=60°,AD=BD=DC. ∴△ABD为等边三角形.(2分) ∴O点为△ABD的中心(内心,外心,垂心三心合一). 连接OA,OB,∠BAO=∠OAD=30°, ∴∠OAC=60°.(3分) 又∵AE为⊙O的切线, ∴OA⊥AE,∠OAE=90°. ∴∠EAF=30°. ∴AE∥BC.(6分) 又∵四边形ABDF内接于圆O, ∴∠FDC=∠BAC=90°. ∴∠AEF=∠FDC=90°,即AE⊥DE.(8分) (2)【解析】 由(1)知,△ABD为等边三角形, ∴∠ADB=60°. ∴∠ADF=∠C=30°,∠FAD=∠DAC. ∴△ADF∽△ACD,则.(10分) ∴AD2=AC•AF,又AD=BC=6. ∴AC•AF=36.(12分)
复制答案
考点分析:
相关试题推荐
一个农机服务队有技术员工和辅助员工共15人,技术员工人数是辅助员工人数的2倍.服务队计划对员工发放奖金共计20 000元,按“技术员工个人奖金”A(元)和“辅助员工个人奖金”B(元)两种标准发放,其中A≥B≥800,并且A,B都是100的整数倍.
注:农机服务队是一种农业机械化服务组织,为农民提供耕种、收割等有偿服务.
(1)求该农机服务队中技术员工和辅助员工的人数;
(2)求本次奖金发放的具体方案.
查看答案
小丽参加数学兴趣小组活动,提供了下面2个有联系的问题,请你帮助解决:
(1)如图1,正方形ABCD中,作AE交BC于E,DF⊥AE交AB于F,求证:AE=DF;
(2)如图2,正方形ABCD中,点E,F分别在AD,BC上,点G,H分别在AB,CD上,且EF⊥GH,求manfen5.com 满分网的值.
manfen5.com 满分网
查看答案
八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A,B,C,D,E五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.
等级帮助父母做家务
时间(小时)
频数
A2.5≤t<32
B2≤t<2.510
C1.5≤t<2a
D1≤t<1.5b
E0.5≤t<13
(1)求a,b的值;
(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;
(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.

manfen5.com 满分网 查看答案
在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:
一次函数与方程的关系:
manfen5.com 满分网
一次函数与不等式的关系;
manfen5.com 满分网
(1)请根据以上方框中的内容在下面数学序号后边的横线上写出相应的结论.
______;②______

manfen5.com 满分网 查看答案
如图,方格纸中有三个点A,B,C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.
manfen5.com 满分网
(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;
(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;
(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.
(注:图甲、图乙、图丙在答题纸上)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.