登录
|
注册
返回首页
联系我们
在线留言
满分5
>
初中数学试题
>
如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在X轴,y轴的正半轴...
如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在X轴,y轴的正半轴上.OA∥BC,D是BC上一点,
,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°,设OE=x,AF=y,则y与x的函数关系式为
,如果△AEF是等腰三角形时.将△AEF沿EF对折得△A′EF与五边形OEFBC重叠部分的面积
.
首先过B作x轴的垂线,设垂足为M,由已知易求得OA=4,在Rt△ABM中,已知了∠OAB的度数及AB的长,即可求出AM、BM的长,进而可得到BC、CD的长,再连接OD,证△ODE∽△AEF,通过得到的比例线段,即可得出y、x的函数关系式; 若△AEF是等腰三角形,应分三种情况讨论: ①AF=EF,此时△AEF是等腰Rt△,A′在AB的延长线上,重合部分是四边形EDBF,其面积可由梯形ABDE与△AEF的面积差求得; ②AE=EF,此时△AEF是等腰Rt△,且E是直角顶点,此时重合部分即为△A′EF,由于∠DEF=∠EFA=45°,得DE∥AB,即四边形AEDB是平行四边形,则AE=BD,进而可求得重合部分的面积; ③AF=AE,此时四边形AEA′F是菱形,重合部分是△A′EF;由(2)知:△ODE∽△AEF,那么此时OD=OE=3,由此可求得AE、AF的长,过F作x轴的垂线,即可求出△AEF中AE边上的高,进而可求得△AEF(即△A′EF)的面积. 【解析】 过B作BM⊥x轴于M; Rt△ABM中,AB=3,∠BAM=45°;则AM=BM=; ∴BC=OA-AM=4-=,CD=BC-BD=; 连接OD; 如图(1),由(1)知:D在∠COA的平分线上,则∠DOE=∠COD=45°; 又∵在梯形DOAB中,∠BAO=45°, ∴由三角形外角定理得:∠1=∠DEA-45°,又∠2=∠DEA-45°, ∴∠1=∠2, ∴△ODE∽△AEF, ∴,即:, ∴y与x的解析式为:, 当△AEF为等腰三角形时,存在EF=AF或EF=AE或AF=AE共3种情况; ①当EF=AF时,如图(2),∠FAE=∠FEA=∠DEF=45°; ∴△AEF为等腰直角三角形,D在A′E上(A′E⊥OA), B在A′F上(A′F⊥EF) ∴△A′EF与五边形OEFBC重叠的面积为四边形EFBD的面积; ∵, ∴, , ∴, ∴; (也可用S阴影=S△A'EF-S△A'BD), ②当EF=AE时,如图(3),此时△A′EF与五边形OEFBC重叠部分面积为△A′EF面积. ∠DEF=∠EFA=45°,DE∥AB,又DB∥EA, ∴四边形DEAB是平行四边形 ∴AE=DB= ∴, ③当AF=AE时,如图(4),四边形AEA′F为菱形且△A′EF在五边形OEFBC内. ∴此时△A′EF与五边形OEFBC重叠部分面积为△A′EF面积. 由(2)知△ODE∽△AEF,则OD=OE=3, ∴AE=AF=OA-OE=, 过F作FH⊥AE于H,则, ∴, 综上所述,△A′EF与五边形OEFBC重叠部分的面积为或1或. 故答案为:,或1或.
复制答案
考点分析:
相关试题推荐
某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD垂直平分BC,AD=BC=40cm,则圆柱形饮水桶的底面半径的最大值是
cm.
查看答案
小明的讲义夹里放了大小相同的试卷共10页,其中语文2页、数学3页、英语5页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为
.
查看答案
不等式组
的整数解的和是
.
查看答案
如果点P(x,y)关于原点的对称点为(-2,3),则x+y=
.
查看答案
分解因式:x
2
-16=
.
查看答案
试题属性
题型:填空题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.