首先求出A,B两点的坐标,用含b的代数式表示D,C两点的坐标,根据S△ABD=4,求出D,C两点的坐标,用待定系数法求出直线CD的函数解析式,将直线AB与直线CD的解析式联立,即可求出P的坐标.
【解析】
由直线AB:y=x+1分别与x轴、y轴交于点A,点B,
可知A,B的坐标分别是(-2,0),(0,1),
由直线CD:y=x+b分别与x轴,y轴交于点C,点D,
可知D的坐标是(0,b),C的坐标是(-b,0),
根据S△ABD=4,得BD•OA=8,
∵OA=2,∴BD=4,
那么D的坐标就是(0,-3),C的坐标就应该是(3,0),
CD的函数式应该是y=x-3,
P点的坐标满足方程组,
解得,
即P的坐标是(8,5).
故选B.