满分5 > 初中数学试题 >

如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP...

如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.
(1)直接写出直线L的解析式;
(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;
(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

manfen5.com 满分网
(1)已知直线L过A,B两点,可将两点的坐标代入直线的解析式中,用待定系数法求出直线L的解析式; (2)求三角形OPQ的面积,就需知道底边OP和高QM的长,已知了OP为t,关键是求出QM的长.已知了QM垂直平分OP,那么OM=t,然后要分情况讨论: ①当OM<OB时,即0<t<2时,BM=OB-OM,然后在等腰直角三角形BQM中,即可得出QM=BM,由此可根据三角形的面积公式得出S与t的函数关系式. ②当OM>OB时,即当t≥2时,BM=OM-OB,然后根据①的方法即可得出S与t的函数关系式. 然后可根据0<t<2时的函数的性质求出S的最大值; (3)如果存在这样的点C,那么CQ=QP=OQ,因此C,O就关于直线BL对称,因此C的坐标应该是(1,1).那么只需证明CQ⊥PQ即可.分三种情况进行讨论. ①当Q在线段AB上(Q,B不重合),且P在线段OB上时.要证∠CQP=90°,那么在四边形CQPB中,就需先证出∠QCB与∠QPB互补,由于∠QPB与∠QPO互补,而∠QPO=∠QOP,因此只需证∠QCB=∠QOB即可,根据折叠的性质,这两个角相等,由此可得证. ②当Q在线段AB上,P在OB的延长线上时,根据①已得出∠QPB=∠QCB,那么这两个角都加上一个相等的对顶角后即可得出∠CQP=∠CBP=90度. ③当Q与B重合时,很显然,三角形CQP应该是个等腰直角三角形. 综上所述即可得出符合条件C点的坐标. 【解析】 由题意得 (1)y=1-x; (2)∵OP=t, ∴Q点的横坐标为, ①当,即0<t<2时,, ∴S△OPQ=t(1-t). ②当t≥2时,QM=|1-t|=t-1, ∴S△OPQ=t(t-1). ∴ 当0<t<1,即0<t<2时,S=t(1-t)=-(t-1)2+, ∴当t=1时,S有最大值; (3)由OA=OB=1, 所以△OAB是等腰直角三角形, 若在L1上存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形, 则PQ=QC, 所以OQ=QC,又L1∥x轴,则C,O两点关于直线L对称, 所以AC=OA=1,得C(1,1).下面证∠PQC=90度.连CB,则四边形OACB是正方形. ①当点P在线段OB上,Q在线段AB上(Q与B、C不重合)时,如图-1. 由对称性,得∠BCQ=∠QOP,∠QPO=∠QOP, ∴∠QPB+∠QCB=∠QPB+∠QPO=180°, ∴∠PQC=360°-(∠QPB+∠QCB+∠PBC)=90度. ②当点P在线段OB的延长线上,Q在线段AB上时,如图-2,如图-3 ∵∠QPB=∠QCB,∠1=∠2, ∴∠PQC=∠PBC=90度. ③当点Q与点B重合时,显然∠PQC=90度. 综合①②③,∠PQC=90度. ∴在L1上存在点C(1,1),使得△CPQ是以Q为直角顶点的等腰直角三角形.
复制答案
考点分析:
相关试题推荐
如图,AB是⊙O的直径,AE平分∠BAF交⊙O于点E,过点E作直线与AF垂直,交AF延长线于点D,交AB延长线于点C.
(1)判断CD是否是⊙O的切线,并说明理由.
(2)若manfen5.com 满分网,⊙O的半径为1,求DE的长.

manfen5.com 满分网 查看答案
小王、小李和小林三人准备打乒乓球,他们约定用“抛硬币”的方式来确定哪两个人先上场,三人手中各持有一枚质地均匀的硬币,同时将手中硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或反面向上的这两枚硬币持有人先上场;若三枚硬币均为正面向上或反面向上,属于不能确定.
(1)请你完成下图中表示“抛硬币”一个回合所有可能出现的结果的树状图;
(2)求一个回合能确定两人先上场的概率.

manfen5.com 满分网 查看答案
如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有暗礁的危险?

manfen5.com 满分网 查看答案
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).
(1)画出△OAB关于点O成中心对称的△OA1B1,并写出点B1的坐标;
(2)求出以点B1为顶点,并经过点B的二次函数关系式.

manfen5.com 满分网 查看答案
小明家离学校2千米,平时骑自行车上学.这天自行车坏了,小明只好步行上学.已知小明骑自行车的速度是步行的4倍,结果比平时慢了20分钟到学校.求小明步行和骑自行车的速度各是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.