如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.
(1)如图1,当点P为线段EC中点时,易证:PR+PQ=
(不需证明).
(2)如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.
(3)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.
考点分析:
相关试题推荐
汶川灾后重建工作受到全社会的广泛关注,全国各省对口支援四川省受灾市县.我省援建剑阁县,建筑物资先用火车源源不断的运往距离剑阁县180千米的汉中市火车站,再由汽车运往剑阁县.甲车在驶往剑阁县的途中突发故障,司机马上通报剑阁县总部并立即检查和维修.剑阁县总部在接到通知后第12分钟时,立即派出乙车前往接应.经过抢修,甲车在乙车出发第8分钟时修复并继续按原速行驶,两车在途中相遇.为了确保物资能准时运到,随行人员将物资全部转移到乙车上(装卸货物时间和乙车掉头时间忽略不计),乙车按原速原路返回,并按预计时间准时到达剑阁县.下图是甲、乙两车离剑阁县的距离y(千米)与时间x(小时)之间的函数图象.请结合图象信息解答下列问题:
(1)请直接在坐标系中的( )内填上数据.
(2)求直线CD的函数解析式,并写出自变量的取值范围.
(3)求乙车的行驶速度.
查看答案
目前,中学生厌学现象已引起全社会的广泛关注.为了有效地帮助学生端正学习态度,让学生以积极向上的心态来面对今后的学习生活,某校领导针对学生的厌学原因设计了调查问卷.问卷内容分为:A、迷恋网络;B、家庭因素;C、早恋;D、学习习惯不良;E、认为读书无用.然后从本校有厌学倾向的学生中随机抽取了若干名学生进行了调查(每位学生只能选择一种原因),把调查结果制成了右侧两个统计图,直方图中从左到右前三组的频数之比为9:4:1,C小组的频数为5.请根据所给信息回答下列问题:
(1)本次共抽取了多少名学生参加测试?
(2)补全直方图中的空缺部分;在扇形统计图中A区域、C区域、D区域所占的百分比分别为______、______、______.
(3)请你根据调查结果和对这个问题的理解,简单地谈谈你自己的看法.
查看答案
已知:抛物线与直线y=x+3分别交于x轴和y轴上同一点,交点分别是点A和点C,且抛物线的对称轴为直线x=-2.
(1)求出抛物线与x轴的两个交点A、B的坐标.
(2)试确定抛物线的解析式.
(3)观察图象,请直接写出二次函数值小于一次函数值的自变量x的取值范围.
查看答案
如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC向右平移4个单位后,得到△A
1B
1C
1,请画出△A
1B
1C
1,并直接写出点C
1的坐标.
(2)作出△A
1B
1C
1关于x轴的对称图形△A
2B
2C
2,并直接写出点A
2的坐标.
(3)请由图形直接判断以点C
1、C
2、B
2、B
1为顶点的四边形是什么四边形?并求出它的面积.
查看答案
先化简,再求值:
÷(2x-
),其中x=
+1.
查看答案