满分5 > 初中数学试题 >

如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与...

如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?

manfen5.com 满分网
(1)根据AB、OB的长,即可得到A、B点的坐标;由于四边形ABCO是平行四边形,则AB=OC,由此可求出OC的长,即可得到C点的坐标,进而可用待定系数法求出抛物线的解析式; (2)根据抛物线的解析式可求出D点的坐标及抛物线的对称轴方程,进而可求出E、F的坐标;若四边形POQE是等腰梯形,则OP=EQ,而OB=EF,可得BP=FQ,根据这个等量关系即可求出t的值; (3)由于∠PBO、∠QOB都是直角,对应相等,若以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似,则有两种情况: ①P、Q在y轴同侧,②P、Q在y轴两侧; 每种情况又分为△PBO∽△QOB(此时两者全等),△PBO∽△BOQ两种情况;根据不同的相似三角形所得到的不同的比例线段即可求出t的值. 【解析】 (1)∵四边形ABCO是平行四边形, ∴OC=AB=4 ∴A(4,2),B(0,2),C(-4,0);(1分) ∵抛物线y=ax2+bx+c过点B, ∴c=2(2分) 由题意,有 解得(3分) ∴所求抛物线的解析式为y=-+x+2;(4分) (2)将抛物线的解析式配方,得y=- ∴抛物线的对称轴为x=2;(5分) ∴D(8,0),E(2,2),F(2,0) 欲使四边形POQE为等腰梯形,则有OP=QE,即BP=FQ; ∴t=6-3t, 即t=1.5;(7分) (3)欲使以点P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似, ∵∠PBO=∠BOQ=90°, ∴有=或, 即PB=OQ或OB2=PB•QO; ①若P、Q在y轴的同侧; 当PB=OQ时,t=8-3t, ∴t=2.(8分) 当OB2=PB•QO时,t(8-3t)=4, 即3t2-8t+4=0, 解得t=2,t=; ②当P、Q在y轴的两侧; 当PB=OQ时,Q、C重合,P、A重合,此时t=4; 当OB2=PB•QO时,t(3t-8)=4, 即3t2-8t-4=0, 解得t=; ∵t=<0,故舍去; ∴t=;(11分) ∴当t=2或t=或t=4或t=秒时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似.(12分)
复制答案
考点分析:
相关试题推荐
因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y(万米3)与时间x(天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:
(1)甲水库每天的放水量是多少万立方米?
(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?
(3)求直线AD的解析式.

manfen5.com 满分网 查看答案
将▱ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.
(1)求证:△ABE≌△AGF.
(2)连接AC,若▱ABCD的面积等于8,manfen5.com 满分网,AC•EF=y,试求y与x之间的函数关系式.

manfen5.com 满分网 查看答案
一个批发兼零售的文具店规定:凡一次性购买铅笔301枝以上(包括301枝),可以按批发价付款; 购买铅笔300枝以下(包括300枝)只能按零售价付款.已知按批发价购买6枝铅笔与按零售价购买5枝的价钱相同; 由于某中学的初三学生要参加中考,需要一批铅笔,校长特派小明来该店购买铅笔,花了120元钱给学校初三年级学生每人买1枝; 后来小明回去算了一下,如果他多买30枝,反而可以少花10元钱.
(1)该文具店购买铅笔批发价是每枝多少元?零售价是每枝多少元?
(2)某人分两次在该文具店里购买铅笔分别花了96元和120元,如果他一次性购买同样数量的铅笔可以少花多少钱?
查看答案
已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是manfen5.com 满分网的中点,连接AD,交CE于P.
(1)求证:P是△ACQ的外心;
(2)若AF=2,AD=8,求⊙O的半径.

manfen5.com 满分网 查看答案
“知识改变命运,科技繁荣祖国”.我区中小学每年都要举办一届科技比赛.如图为我区某校2011年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图
(1)该校参加机器人、建模比赛的人数分别是______人和______人;
(2)该校参加科技比赛的总人数是______人,电子百拼所在扇形的圆心角的度数是______°,并把条形统计图补充完整;
(3)从全区中小学参加科技比赛选手中随机抽取80人,其中有32人获奖.今年我区中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.