满分5 >
初中数学试题 >
已知如图,△ABC是⊙O的内接正三角形,弦EF经过BC边的中点D,且EF∥BA,...
已知如图,△ABC是⊙O的内接正三角形,弦EF经过BC边的中点D,且EF∥BA,若⊙O的半径为
,则DE的长为( )
A.
B.
C.
-1
D.
考点分析:
相关试题推荐
已知抛物线y=
x
2+bx+c与x轴交于A(x
1,0),D(x
2,0)(x
1>x
2)两点,并且AD=1,又经过点B(4,1),与y轴交于点C.
(1)求抛物线y=
x
2+bx+c的函数关系式;
(2)求点A及点C的坐标;
(3)如图1,连接AB,在题1中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(4)如图2,连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
查看答案
2011年在国家央行加息的压力下,某公司决定研制一种新型节能产品并加以销售,现准备在一线城市和二线城市两个不同地方按不同销售方案进行销售,以便开拓市场.
若只在一线城市销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=
x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为 W
一线(元)(利润=销售额-成本-广告费).
若只在二线城市销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳
x
2 元的附加费,设月利润为 W
二线(元)(利润=销售额-成本-附加费).
(1)当x=1000时,y=______元/件,w
一线;=______元;
(2)分别求出 W
一线,W
二线与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在一线城市销售的月利润最大?若在二线城市销售月利润的最大值与在一线城市销售月利润的最大值相同,求a的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在二线城市还是在一线城市销售才能使所获月利润较大?
查看答案
已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧
上取一点E使∠EBC=∠DEC,延长BE依次交AC于点G,交⊙O于H.
(1)求证:AC丄BH;
(2)若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长.
查看答案
某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1 m.
(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?
(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60 km/h的速度驾驶该车,从60 km/h到摩托车停止的刹车距离是
m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.
(参考数据:
,
,
,
)
查看答案
某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.
(1)符合题意的组建方案有几种?请你帮学校设计出来;
(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?
查看答案