满分5 > 初中数学试题 >

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两...

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

manfen5.com 满分网
(1)已知抛物线过C(0,-2)点,那么c=-2;根据对称轴为x=-1,因此-=-1,然后将A点的坐标代入抛物线中,通过联立方程组即可得出抛物线的解析式. (2)本题的关键是确定P点的位置,由于A是B点关于抛物线对称轴的对称点,因此连接AC与抛物线对称轴的交点就是P点.可根据A,C的坐标求出AC所在直线的解析式,然后根据得出的一次函数的解析式求出与抛物线对称轴的交点即可得出P点的坐标. (3)△PDE的面积=△OAC的面积-△PDC的面积-△ODE的面积-△AEP的面积 △OAC中,已知了A,C的坐标,可求出△OAC的面积. △PDC中,以CD为底边,P的横坐标的绝对值为高,即可表示出△PDC的面积. △ODE中,可先用m表示出OD的长,然后根据△ODE与△OAC相似,求出OE的长,根据三角形的面积计算公式可用m表示出△ODE的面积. △PEA中,以AE为底边(可用OE的长表示出AE),P点的纵坐标的绝对值为高,可表示出△PEA的面积. 由此可表示出△ODE的面积,即可得出关于S,m的函数关系式.然后根据函数的性质求出三角形的最大面积以及对应的m的值. 【解析】 (1)由题意得, 解得, ∴此抛物线的解析式为y=x2+x-2. (2)连接AC、BC. 因为BC的长度一定, 所以△PBC周长最小,就是使PC+PB最小. B点关于对称轴的对称点是A点,AC与对称轴x=-1的交点即为所求的点P. 设直线AC的表达式为y=kx+b, 则, 解得, ∴此直线的表达式为y=-x-2, 把x=-1代入得y=- ∴P点的坐标为(-1,-). (3)S存在最大值, 理由:∵DE∥PC,即DE∥AC. ∴△OED∽△OAC. ∴,即, ∴OE=3-m,OA=3,AE=m, ∴S=S△OAC-S△OED-S△AEP-S△PCD =×3×2-×(3-m)×(2-m)-×m×-×m×1 =-m2+m=-(m-1)2+ ∵ ∴当m=1时,S最大=.
复制答案
考点分析:
相关试题推荐
如图,以AB为直径的半圆O上有一点C,过A点作半圆的切线交BC的延长线于点D.
(1)求证:△ADC∽△BDA;
(2)过O点作AC的平行线OF分别交BC,manfen5.com 满分网于E、F两点,若BC=2manfen5.com 满分网,EF=1,求manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:
型号AB
成本(万元/台)200240
售价(万元/台)250300
(1)该厂对这两型挖掘机有哪几种生产方案?
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价-成本)
查看答案
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点manfen5.com 满分网E,且AE=AC.
(1)求证:BG=FG;
(2)若AD=DC=2,求AB的长.
查看答案
在某市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方来.
(1)求运往D、E两地的数量各是多少立方米?
(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米.C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地.且C地运往E地不超过12立方米.则A、C两地运往D、E两地有哪几种方案?
查看答案
某服装店经营某种品牌童装,进价为每件120元,根据经验,售价定为每件180元时,每月可卖出100件,定价每降价10元,销售量将增加20件.
(1)设降价x元时,每月所获利润为y元,写出y与x的函数关系式.并求出当定价为多少时利润最大?最大利润是多少?
(2)商店要获得6000元的利润,同时要减少库存,定价应为多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.