满分5 > 初中数学试题 >

如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半...

如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.
(1)直接写出直线AB的解析式;
(2)求点D的坐标;
(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.
manfen5.com 满分网
(1)根据A(0,4),B(4,0)两点坐标,可求直线AB的解析式; (2)作DG⊥y轴,垂足为G,由已知得OA=OB=4,△OAB为等腰直角三角形,而AD⊥AB,利用互余关系可知,△ADG为等腰直角三角形,则DG=AG=OG-OA=DM-OA=6-4=2,可求D点坐标; (3)存在.已知O(0,0),B(4,0),设抛物线的交点式,将D点坐标代入求抛物线解析式,由于对顶角∠CFE=∠BFP=45°,故当△BPF与△FCE相似时,分为:∠ECF=∠BPF=90°,∠CEF=∠BPF=90°两种情况,根据等腰直角三角形的性质求P点坐标. 【解析】 (1)设直线AB的解析式为y=kx+b,将A(0,4),B(4,0)两点坐标代入, 得,解得,所以,直线AB的解析式为y=-x+4; (2)过D点作DG⊥y轴,垂足为G, ∵OA=OB=4, ∴△OAB为等腰直角三角形, 又∵AD⊥AB, ∴∠DAG=90°-∠OAB=45°,即△ADG为等腰直角三角形, ∴DG=AG=OG-OA=DM-OA=6-4=2, ∴D(2,6); (3)存在. 由抛物线过O(0,0),B(4,0)两点,设抛物线解析式为y=ax(x-4), 将D(2,6)代入,得a=-,所以,抛物线解析式为y=-x(x-4), 由(2)可知,∠PBF=45°,则∠CFE=∠BFP=45°,C(2,2), 设P(x,0),则MP=x-2,PB=4-x, ①当∠ECF=∠BPF=90°时(如图1),△BPF与△FCE相似, 过C点作CH⊥EF,此时,△CHE、△CHF、△PBF为等腰直角三角形, 则PE=PF+FH+EH=PB+2MP=4-x+2(x-2)=x, 将E(x,x)代入抛物线y=-x(x-4)中,得x=-x(x-4),解得x=0或,即P(,0), ②当∠CEF=∠BPF=90°时(如图2),此时,△CEF、△BPF为等腰直角三角形, 则PE=MC=2,将E(x,2)代入抛物线y=-x(x-4)中,得2=-x(x-4), 解得x=或,即P(,0), 所以,P(,0)或(,0).
复制答案
考点分析:
相关试题推荐
如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.
(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;
(3)当∠1=∠2时,求直线PE的解析式.

manfen5.com 满分网 查看答案
某实验学校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,如果购买3张两人学习桌,1张三人学习桌需220元;如果购买2张两人学习桌,3张三人学习桌需310元.
(1)求两人学习桌和三人学习桌的单价;
(2)学校欲投入资金不超过6000元,购买两种学习桌共98张,以至少满足248名学生的需求,设购买两人学习桌x张,购买两人学习桌和三人学习桌的总费用为W 元,求出W与x的函数关系式;求出所有的购买方案.
查看答案
如图,AB是⊙O的弦,AB=4,过圆心O的直线垂直AB于点D,交⊙O于点C和点E,连接AC、BC、OB,cos∠ACB=manfen5.com 满分网,延长OE到点F,使EF=2OE.
(1)求⊙O的半径;
(2)求证:BF是⊙O的切线.

manfen5.com 满分网 查看答案
为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)本次抽样调查了多少个家庭?
(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;
(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数;
(4)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭?
manfen5.com 满分网
查看答案
现有两个不透明的乒乓球盒,甲盒中装有1个白球和2个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为manfen5.com 满分网.        
(1)求乙盒中红球的个数;
(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.