满分5 > 初中数学试题 >

Rt△ABC中,∠A=90°,BC=4,有一个内角为60°,点P是直线AB上不同...

Rt△ABC中,∠A=90°,BC=4,有一个内角为60°,点P是直线AB上不同于A、B的一点,且∠ACP=30°,则PB的长为   
分两种情况考虑:当∠ABC=60°时,如图所示,由∠ABC=60°,利用直角三角形的两锐角互余求出∠CAB=30°,又∠PCA=30°,由∠PCA+∠ACB求出∠PCB为60°,可得出三角形PCB为等边三角形,根据等边三角形的三边相等,由BC的长即可求出PB的长;当∠ABC=30°时,再分两种情况:(i)P在A的右边时,如图所示,由∠PCA=30°,∠ACB=60°,根据∠PCA+∠ACB求出∠PCB为直角,由∠ABC=30°及BC的长,利用锐角三角形函数定义及cos30°的值,即可求出PB的长;当P在A的左边时,如图所示,由∠PCA=30°,∠ACB=60°,根据∠ACB-∠ACP求出∠PCB为30°,得到∠PCB=∠ABC,利用等角对等边得到PC=PB,由BC及∠ABC=30°,利用30°所对的直角边等于斜边的一半求出AC的长,再利用勾股定理求出AB的长,由AB-BP表示出AP,在直角三角形ACP中,利用勾股定理列出关于PB的方程,求出方程的解得到PB的长,综上,得到所有满足题意的PB的长. 【解析】 分两种情况考虑: 当∠ABC=60°时,如图所示: ∵∠CAB=90°, ∴∠BCA=30°,又∠PCA=30°, ∴∠PCB=∠PCA+∠ACB=60°,又∠ABC=60°, ∴△PCB为等边三角形,又BC=4, ∴PB=4; 当∠ABC=30°时,如图所示: (i)当P在A的左边时,如图所示: ∵∠PCA=30°,∠ACB=60°, ∴∠PCB=90°, 又∠B=30°,BC=4, ∴cosB=,即cos30°=, 解得:PB==; (ii)当P在A的右边时,如图所示: ∵∠PCA=30°,∠ACB=60°, ∴∠BCP=30°,又∠B=30°, ∴∠BCP=∠B, ∴CP=BP, 在Rt△ABC中,∠B=30°,BC=4, ∴AC=BC=2, 根据勾股定理得:AB==2, ∴AP=AB-PB=2-PB, 在Rt△APC中,根据勾股定理得:AC2+AP2=CP2=BP2, ∴22+(2-BP)2=BP2, 解得:BP=, 综上,BP的长分别为4或或. 故答案为:4或或
复制答案
考点分析:
相关试题推荐
用半径为9,圆心角为120°的扇形围成一个圆锥,则圆锥的高为    查看答案
由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是   
manfen5.com 满分网 查看答案
如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为   
manfen5.com 满分网 查看答案
已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是manfen5.com 满分网,则y与x之间的函数关系式为    查看答案
因式分【解析】
27x2-3y2=    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.