根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.
【解析】
(a+3)(a+7)=a2+10a+21;
(a-5)(a-6)=a2-11a+30;
(c-2)(c+7)=c2+5c-14;
(x+1)(x-9)=x2-8x-9;
(n+9)(n+9)=n2+18n+81;
(n-9)(n-9)=n2-18n+81;
(x+3y)(x-y)=x2+2xy-3y2;
(b-4c)(b+4c)=b2-16c2;
(m+2p)(m-3p)=m2-mp-6p2;
(e+f)(e+5f)=e2+6ef+5f2;
(1+7a)(1-7a)=1-49a2;
(b-c)(-b+c)=-b2+2bc-c2;
(1-2a)(1+5a)=1+3a-10a2;
(4m+n)(m-3n)=4m2-11mn-3n2;
(2d+e)(d+3e)=2d2+7de+3e2;
(y+9)(2y+1)=2y2+11y+9;
(ab-1)(ab-1)=a2b2+2ab+1;
(e-10d)(e-2d)=e2-12ed+20d2;
(x-y)(x-3y)=x2-4xy+3y2;
(a-5b)(a+7b)=a2+2ab-35b2;
(x+2)(x+5)=x2+7x+10.