满分5 > 初中数学试题 >

如图,已知反比例函数的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△...

如图,已知反比例函数manfen5.com 满分网的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数manfen5.com 满分网的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长.

manfen5.com 满分网
(1)根据点A的横坐标与△AOB的面积求出AB的长度,从而得到点A的坐标,然后利用待定系数法求出反比例函数解析式,再利用反比例函数解析式求出点C的坐标,根据点A与点C的坐标利用待定系数法即可求出直线y=ax+b的解析式; (2)根据直线y=ax+b的解析式,取y=0,求出对应的x的值,得到点M的坐标,然后求出BM的长度,在△ABM中利用勾股定理即可求出AM的长度. 【解析】 (1)∵点A(-1,m)在第二象限内, ∴AB=m,OB=1, ∴S△ABO=AB•BO=2, 即:×m×1=2, 解得m=4, ∴A (-1,4), ∵点A (-1,4),在反比例函数的图象上, ∴4=, 解得k=-4, ∴反比例函数为y=-, 又∵反比例函数y=-的图象经过C(n,-2) ∴-2=, 解得n=2, ∴C (2,-2), ∵直线y=ax+b过点A (-1,4),C (2,-2) ∴, 解方程组得, ∴直线y=ax+b的解析式为y=-2x+2; (2)当y=0时,即-2x+2=0, 解得x=1, ∴点M的坐标是M(1,0), 在Rt△ABM中, ∵AB=4,BM=BO+OM=1+1=2, 由勾股定理得AM===.
复制答案
考点分析:
相关试题推荐
如图,P是矩形ABCD下方一点,将△PCD绕P点顺时针旋转60°后恰好D点与A点重合,得到△PEA,连接EB,问△ABE是什么特殊三角形?请说明理由.

manfen5.com 满分网 查看答案
从3名男生和2名女生中随机抽取2014年南京青奧会志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.
查看答案
省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次第二次第三次第四次第五次第六次
10898109
107101098
(1)根据表格中的数据,计算出甲的平均成绩是______环,乙的平均成绩是______环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
{计算差的平方公式:S2=manfen5.com 满分网[x1-manfen5.com 满分网+x2-manfen5.com 满分网+…xn-manfen5.com 满分网]}.
查看答案
“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.
(1)求第一批玩具每套的进价是多少元?
(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?
查看答案
如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.
(1)在图中画出点O的位置.
(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1
(3)在网格中画出格点M,使A1M平分∠B1A1C1

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.