满分5 > 初中数学试题 >

情境观察 将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1...

情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是______,∠CAC′=______°.manfen5.com 满分网
manfen5.com 满分网
问题探究manfen5.com 满分网
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
①观察图形即可发现△ABC≌△AC′D,即可解题; ②易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题; ③过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据全等三角形的判定和性质即可解题. 【解析】 ①观察图形即可发现△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB, ∴∠CAC′=180°-∠C′AD-∠CAB=90°; 故答案为:AD,90. ②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°, ∴∠AFQ=∠CAG,同理∠ACG=∠FAQ, 又∵AF=AC, ∴△AFQ≌△CAG, ∴FQ=AG, 同理EP=AG, ∴FQ=EP. ③HE=HF. 理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q. ∵四边形ABME是矩形, ∴∠BAE=90°, ∴∠BAG+∠EAP=90°, 又AG⊥BC, ∴∠BAG+∠ABG=90°, ∴∠ABG=∠EAP. ∵∠AGB=∠EPA=90°, ∴△ABG∽△EAP, ∴AG:EP=AB:EA. 同理△ACG∽△FAQ, ∴AG:FQ=AC:FA. ∵AB=k•AE,AC=k•AF, ∴AB:EA=AC:FA=k, ∴AG:EP=AG:FQ. ∴EP=FQ. 又∵∠EHP=∠FHQ,∠EPH=∠FQH, ∴Rt△EPH≌Rt△FQH(AAS). ∴HE=HF.
复制答案
考点分析:
相关试题推荐
兰州市城市规划期间,欲拆除黄河岸边的一根电线杆AB(如图),已知距电线杆AB水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡角∠CDF的正切值为2,岸高CF为2米,在坡顶C处测得杆顶A的仰角为30°,D、E之间是宽2米的人行道,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将此人行道封上?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)

manfen5.com 满分网 查看答案
已知如图(1),⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,交BN于C.
(1)设AD=m,BC=n,若m、n是方程2x2-30x+a=0的两个根,求m、n.
(2)如图(2),连接OD、BE,求证:OD∥BE.
manfen5.com 满分网
查看答案
我县实施新课程改革后,学生的自主学习、合作交流能力有很大提高,胡老师为了了解班级学生自主学习、合作交流的具体情况,对某班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,胡老师一共调查了______名同学,其中女生共有______名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,胡老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
manfen5.com 满分网
查看答案
已知:如图,在梯形ABCD中,AD∥BC,AB=DC=AD=2,BC=4.求∠B的度数及AC的长.

manfen5.com 满分网 查看答案
化简求值.若a=3-tan60°,求代数式manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.