满分5 > 初中数学试题 >

如图1,抛物线y=x2-2x+k与x轴交于A、B两点,与y轴交于点C(0,-3)...

如图1,抛物线y=x2-2x+k与x轴交于A、B两点,与y轴交于点C(0,-3).[图2、图3为解答备用图]
manfen5.com 满分网
(1)k=______,点A的坐标为______,点B的坐标为______
(2)设抛物线y=x2-2x+k的顶点为M,求四边形ABMC的面积;
(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;
(4)在抛物线y=x2-2x+k上求点Q,使△BCQ是以BC为直角边的直角三角形.
(1)把C(0,-3)代入抛物线解析式可得k值,令y=0,可得A,B两点的横坐标; (2)过M点作x轴的垂线,把四边形ABMC分割成两个直角三角形和一个直角梯形,求它们的面积和; (3)设D(m,m2-2m-3),连接OD,把四边形ABDC的面积分成△AOC,△DOC,△DOB的面积和,求表达式的最大值;(4)有两种可能:B为直角顶点、C为直角顶点,要充分认识△OBC的特殊性,是等腰直角三角形,可以通过解直角三角形求出相关线段的长度. 【解析】 (1)把C(0,-3)代入抛物线解析式y=x2-2x+k中得k=-3 ∴y=x2-2x-3, 令y=0, 即x2-2x-3=0, 解得x1=-1,x2=3. ∴A(-1,0),B(3,0). (2)∵y=x2-2x-3=(x-1)2-4, ∴抛物线的顶点为M(1,-4),连接OM. 则△AOC的面积=,△MOC的面积=, △MOB的面积=6, ∴四边形ABMC的面积=△AOC的面积+△MOC的面积+△MOB的面积=9. 说明:也可过点M作抛物线的对称轴,将四边形ABMC的面 积转化为求1个梯形与2个直角三角形面积的和. (3)如图(2),设D(m,m2-2m-3),连接OD. 则0<m<3,m2-2m-3<0 且△AOC的面积=,△DOC的面积=m, △DOB的面积=-(m2-2m-3), ∴四边形ABDC的面积=△AOC的面积+△DOC的面积+△DOB的面积 =-m2+m+6 =-(m-)2+. ∴存在点D(,),使四边形ABDC的面积最大为. (4)有两种情况: 如图(3),过点B作BQ1⊥BC,交抛物线于点Q1、交y轴于点E,连接Q1C. ∵∠CBO=45°, ∴∠EBO=45°,BO=OE=3. ∴点E的坐标为(0,3). ∴直线BE的解析式为y=-x+3. 由 解得 ∴点Q1的坐标为(-2,5). 如图(4),过点C作CF⊥CB,交抛物线于点Q2、交x轴于点F,连接BQ2. ∵∠CBO=45°, ∴∠CFB=45°,OF=OC=3. ∴点F的坐标为(-3,0). ∴直线CF的解析式为y=-x-3. 由 解得 ∴点Q2的坐标为(1,-4). 综上,在抛物线上存在点Q1(-2,5)、Q2(1,-4),使△BCQ1、△BCQ2是以BC为直角边的直角三角形. 说明:如图(4),点Q2即抛物线顶点M,直接证明△BCM为直角三角形同样可以.
复制答案
考点分析:
相关试题推荐
在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
manfen5.com 满分网
(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
查看答案
A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.
(1)求y关于x的表达式;
(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;
(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.
(1)求证:直线DE是⊙O的切线;
(2)当AB=5,AC=8时,求cos∠E的值.

manfen5.com 满分网 查看答案
已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.
(1)请你在图中画出此时DE在阳光下的投影;
(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.

manfen5.com 满分网 查看答案
为推进阳光体育活动的开展,某校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:
manfen5.com 满分网
(1)求该班学生人数;
(2)请你补上条形图的空缺部分;
(3)求跳绳人数所占扇形圆心角的大小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.