满分5 > 初中数学试题 >

某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角...

某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1 m.
manfen5.com 满分网
(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?
(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60 km/h的速度驾驶该车,从60 km/h到摩托车停止的刹车距离是manfen5.com 满分网m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.
(参考数据:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)本题可通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知了AE的长,可在直角三角形ABE、ACE中分别求出BE、CE的长,BC就能求出了. (2)本题可先计算出最小安全距离是多少,然后于大灯的照明范围进行比较,然后得出是否合格的结论. 【解析】 (1)过A作AD⊥MN于点D, 在Rt△ACD中,tan∠ACD==,CD=5.6(m), 在Rt△ABD中,tan∠ABD==,BD=7(m), ∴BC=7-5.6=1.4(m). 答:该车大灯照亮地面的宽度BC是1.4m; (2)该车大灯的设计不能满足最小安全距离的要求. 理由如下:∵以60 km/h的速度驾驶, ∴速度还可以化为:m/s, 最小安全距离为:×0.2+=8(m), 大灯能照到的最远距离是BD=7m, ∴该车大灯的设计不能满足最小安全距离的要求.
复制答案
考点分析:
相关试题推荐
附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=manfen5.com 满分网的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;
(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

manfen5.com 满分网 查看答案
某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A--概念错误;B--计算错误;C--解答基本正确,但不完整;D--解答完全正确.各校出现这四类情况的人数分别占本校高二学生数的百分比如下表所示.
ABCD
甲校(%)2.7516.2560.7520.25
乙校(%)3.7522.5041.2532.50
丙校(%)12.506.2522.5058.75
已知甲校高二有400名学生,这三所学校高二学生人数的扇形统计图如图.
根据以上信息,解答下列问题:
(1)求全区高二学生总数;
(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);
(3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A′C′D′.
(1)证明△A′AD′≌△CC′B;
(2)若∠ACB=30°,试问当点C'在线段AC上的什么位置时,四边形ABC′D′是菱形,并请说明理由.
查看答案
先化简,再求值:manfen5.com 满分网.其中x=-3,y=-2.
查看答案
如图,△ABC中,∠ACB=90°,∠A=30°,将△ABC绕C点按逆时针方向旋转α角(0°<α<90°)得到△DEC,设CD交AB于F,连接AD,当旋转角α度数为    ,△ADF是等腰三角形.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.