满分5 > 初中数学试题 >

如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC...

如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度���为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.

manfen5.com 满分网
(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,CB、CN已知,根据勾股定理可求CA=5,即可表示CM; (2)四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解; (3)可先根据QN平分△ABC的周长,得出MC+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值. (4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论: ①当MP=MC时,那么PC=2NC,据此可求出t的值. ②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值. ③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值. 综上所述可得出符合条件的t的值. 【解析】 (1)∵AQ=3-t, ∴CN=4-(3-t)=1+t. 在Rt△ABC中,AC2=AB2+BC2=32+42, ∴AC=5. 在Rt△MNC中,cos∠NCM==,CM=; (2)由于四边形PCDQ构成平行四边形, ∴PC=QD,即4-t=t, 解得t=2. (3)如果射线QN将△ABC的周长平分,则有: MC+NC=AM+BN+AB, 即:(1+t)+1+t=(3+4+5), 解得:t=.(5分) 而MN=NC=(1+t), ∴S△MNC=(1+t)2=(1+t)2, 当t=时,S△MNC=(1+t)2=≠×4×3. ∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分; (4)①当MP=MC时;则有:NP=NC, 即PC=2NC∴4-t=2(1+t), 解得:t=; ②当CM=CP时;则有:(1+t)=4-t, 解得:t=; ③当PM=PC时;则有:在Rt△MNP中,PM2=MN2+PN2, 而MN=NC=(1+t), PN=|PC-NC|=|(4-t)-(1+t)|=|3-2t|, ∴[(1+t)]2+(3-2t)2=(4-t)2, 解得:t1=,t2=-1(舍去) ∴当t=,t=,t=时,△PMC为等腰三角形.
复制答案
考点分析:
相关试题推荐
如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=manfen5.com 满分网BD,EN=manfen5.com 满分网CE,得到图③,请解答下列问题:
manfen5.com 满分网
(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是______
②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;
(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.
查看答案
为了鼓励城市周边的农民的种菜的积极性,某公司计划新建A,B两种温室80栋,将其中售给农民种菜.该公司建设温室所筹资金不少于209.6万元,但不超过210.2万元.且所筹资金全部用于新建温室.两种温室的成本和出售价如下表:
 A型B型
成本(万元/栋)2.52.8
出售价(万元/栋)3.13.5
(1)这两种温室有几种设计方案?
(2)根据市场调查,每栋A型温室的售价不会改变,每栋B型温室的售价可降低m万元(0.1<m<0.7)且所建的两种温室可全部售出.为了减轻菜农负担,试问采用什么方案建设温室可使利润最少.
查看答案
某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1 m.
manfen5.com 满分网
(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?
(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60 km/h的速度驾驶该车,从60 km/h到摩托车停止的刹车距离是manfen5.com 满分网m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.
(参考数据:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
查看答案
附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=manfen5.com 满分网的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;
(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

manfen5.com 满分网 查看答案
某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A--概念错误;B--计算错误;C--解答基本正确,但不完整;D--解答完全正确.各校出现这四类情况的人数分别占本校高二学生数的百分比如下表所示.
ABCD
甲校(%)2.7516.2560.7520.25
乙校(%)3.7522.5041.2532.50
丙校(%)12.506.2522.5058.75
已知甲校高二有400名学生,这三所学校高二学生人数的扇形统计图如图.
根据以上信息,解答下列问题:
(1)求全区高二学生总数;
(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);
(3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.