连BD,设CD=3x,则DA=4x,根据垂直平分的性质得到DB=DA=5x,在Rt△BCD中利用勾股定理得到(5x)2=(3x)2+42,解出x=1,则AC=AD+DC=5x+3x=8x=8,然后在Rt△ABC中根据勾股定理计算出AB=4,然后根据正弦的定义可计算出sinA的值.
【解析】
连BD,如图,
设CD=3x,则DA=4x,
∵MN垂直平分AB,
∴DB=DA=5x,
在Rt△BCD中,BC=4,
∵BD2=CD2+BC2,
∴(5x)2=(3x)2+42,
∴x=1,
∴AC=AD+DC=5x+3x=8x=8,
在Rt△ABC中,AB===4,
∴sinA===.
故选B.