如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时OA′、B′C′分别与直线BC相交于P、Q.
(1)四边形OA′B′C′的形状是______,当α=90°时,
的值是______;
(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求
的值;
②如图3,当四边形OA′B′C′的顶点B′落在直线BC上时,求△OPB′的面积;
(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=
BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案
定义{a,b,c}为函数y=ax
2+bx+c的“特征数”.如:函数y=x
2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是
的函数图象向下平移2个单位,得到一个新函数,这个新函数的解析式是y=
;
(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=
分别交于D、C两点,判断以A、B、C、D四点为顶点的四边形形状,请说明理由并计算其周长;
(3)若(2)中的四边形与“特征数”是
的函数图象的有交点,求满足条件的实数b的取值范围.
查看答案